
Special Series Summation with Arbitrary Precision
S. Kamal Abdali

Abdali, S Kamal (1970). “Algorithm 393. Special Series Summation with Arbitrary Precision”.
Communications of the ACM. 13 (9): 570.
https://doi.org/10.1145/362736.362756

The Algol 60 code of the algorithm as listed in the cited article appears below after the publication
information.

ALGORITHM 393
SPECIAL SERIES SUMMATIONWITH ARBITRARY PRECISION [C6]
S. Kamal Abdali* (Recd. 23 June 1969 and 9 Mar. 1970)
University of Wisconsin, Department of Computer Science, Madison, WI 35706

* This work was done while the author was at the University of Montreal, Montreal, Canada.

KEY WORDS AND PHRASES: function evaluation, series summation, approximation
CR CATEGORIES: 5.12, 5.13

procedure series (places, terms, base, digit, sgn, numerator, denominator, num0, denom0);
value places, terms, base; integer places, terms, base, sgn, num0, denom0;
integer array digit; integer procedure numerator, denominator;

comment Programs for very precise summation of series are conventionally written in machine
language and employmulti-precision routines to perform arithmetic on especially definedmul-
tiword registers. The present algorithm requires only integer arithmetic and can be imple-
mented in any algebraic language. It is applicable to series in which the ratios of successive
terms can be expressed as quotients of given integers or integer functions of term positions.

The sum of a given series is computed to a given number of places, places, in a specified
base for representation, base. The number of terms needed, terms, should be calculated outside
the procedure. Procedures numerator and denominator are to be obtained from the fraction
𝑖th term/(𝑖 − 1)-th term, expressed as a ratio of two integer functions of i. (That fraction should
preferably be reduced to its lowest terms.) num0 and denom0 are the integer numerator and
denominator of the 0th term. The outputs of the procedure are the sign of the result, sgn, the
integer part, digit[0], and the digits of the fractional part, digit[1],⋯ , digit[places].

For example, one way to compute sin 0.6 = .6 − .63/3! + 65/5! − ⋯ correct to 1000 decimal
places is to call series with the parameter values: terms = 226, num0 = 3, denom0 = 5, (and
since 𝑖th term/(𝑖 − 1)-th term = −.62/2𝑖(2𝑖 + 1)) numerator(i) = −9 and denominator(i) =
50𝑖(2𝑖 + 1). By taking base = 100000 and places = 200, five decimal digits of the result will
be obtained per word of the array digit.

The use of a large base (and, consequently, smaller places) results in faster computation,
as the number of operations is proportional to (places × terms) for large values of terms and
places. However, the intermediate products (base × num[i] × coef [i]) (and coef [i] can almost

https://doi.org/10.1145/362736.362756


equal denom[i]) should not exceed the largest number representable by an integer variable. Also
within this limit should be the product of base and the integer portion of the result;

begin
integer i, j, k, l; integer array num[−1:terms], denom, coef [0:terms];
comment Express the series by the expression

𝑛0
𝑑0

(𝑐0 +
𝑛1
𝑑1

(𝑐1 +⋯+ 𝑛𝑡
𝑑𝑡
(𝑐𝑡)⋯)) (1)

where 𝑛𝑖 and 𝑑𝑖 are positive and 𝑐𝑖 are ±1. (For short, 𝑛, 𝑑, 𝑐 and 𝑡 in (1) stand for num,
denom, coef and terms, respectively);

num[−1] := 1; num[0] := abs(num0); denom[0] := abs(denom[0]);
coef [0] := sign(num0) × sign(denom0);
for j := 1 step 1 until terms do
begin

k := numerator(j); l := denominator(j); num[j] := abs(k);
denom[j] := abs(l); coef [j] := coef [j−1] × sign(k) × sign(l)

end;
commentCalculate digits one at a step by extracting the integer part of base × (1) and restoring

the fractional part in form (1);
for i := 1 step 1 until places do
begin

l := 0;
for j := terms step −1 until 0 do
begin

k := num[j] × (coef [j]×base+l); l := k ÷ denom[j];
coef [j] := k − l × denom[j]; num[j] := num[j−1]

end j;
digit[i] := l

end i;
comment Some digits may be negative or larger than base in absolute value. Process the array

digit to obtain true base representation;
l := 0;
for i := places step −1 until 1 do
begin

k := digit[i] + l; l := k ÷ base; digit[i] := k − base × l;
if digit[i] < 0 then
begin digit[i] := digit[i] + base; l := l − 1 end

end;
digit[0] := l; sgn := sign(l);
if l < 0 then
begin

digit[0] := −l − 1; digit[places] := digit[places] − 1;
for i := 1 step 1 until places do digit[i] := base − 1 − digit[i]

end
end series

2


