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Abstract

In this paper, we describe a parallelization scheme for
Collins’ cylindrical algebraic decomposition algorithm
for quantifier elimination in the theory of real closed
fields. We first discuss a parallel implementation of the
computer algebra system SAC2 in which a complete se-
quential implementation of Collins’ algorithm already
exists. We report some initial results on the speedup ob-
tained, drawing on a suite of examples previously given
by Arnon.

1 Introduction

The elementary theory of Algebra and Geometry or the-
ory of real closed fields is in essence the matter of decid-
ing the validity of statements which can contain quanti-
fiers and logical connectives and in which the atomic for-
mulae consist of polynomial equations and inequalities.
For example, (∃x)(∀y)[(x2 + y2 > 1)&(xy ≥ 1)] is such
a statement. The more general problem is that of quan-
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tifier elimination. Here the given formula may contain
free variables, and the problem is to find a quantifier-
free formula logically equivalent to the given one. For
example, (∀x)[x2 + bx + c ≥ 0] contains free variables
b and c, and a logically equivalent quantifier-free for-
mula is b2 − 4c ≥ 0. If the given formula has no free
variables, then the result of eliminating quantifiers is a
formula which is just TRUE or FALSE.

The first algorithm for quantifier elimination was
given by Tarski [?] in 1940. Although important theo-
retically for establishing that the theory of real closed
fields is decidable, this algorithm turns out to be too
inefficient to be of any practical use. The cylindrical
algebraic decomposition (CAD) algorithm was invented
by Collins [?] in 1973. A full implementation of the
CAD algorithm was completed in 1981 by Arnon in the
computer algebra system SAC2. A variant of the algo-
rithm using clustering was later implemented in SAC2
also [?].

The CAD algorithm has found use in several ar-
eas other than quantifier elimination, e.g. robot mo-
tion planning [?], term-rewriting systems [?], algebraic
topology [?], and computer graphics [?]. Algorithms
other than Collins’ have been proposed, e.g. [?, ?, ?, ?]
and important improvements in the CAD approach have
been offered, e.g. [?]. But at present no other algorithms
have been implemented, and no complete implementa-
tion of even the CAD algorithm is available in any com-
puter algebra system other than SAC2.

The CAD algorithm is doubly exponential in the
number of real variables involved, and, in practice, can
only solve rather small problems in a reasonable time.
Nonetheless, many interesting and, indeed, unsolved
problems can be expressed by a reasonably sized state-
ment in the theory, involving only a few variables. This
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pilot project explores the potential to increase the uni-
verse of solvable problems in the theory by exploiting
multiprocessing.

Parallel processing architectures can provide dra-
matic speedup in the time needed to perform many com-
putations, including algebraic ones. Here we obtain a
speedup by using coarse grained parallelism on a mul-
tiprocessor with tens of processors and shared memory.
Examples of such machines are the Sequent Balance and
Symmetry models, the Encore Multimax, and the BBN
Butterfly. The computations reported here were per-
formed on a Sequent Symmetry with 8 processors.

In contrast to MIMD machines and the coarse grained
approach taken here, one might consider SIMD designs
and fine grained parallelism. Such an approach works
best on homogeneously structured data, so that the syn-
chronous processing can be effective. However, most
data in algebraic computation is highly heterogeneous.
For example, consider matrices whose entries are poly-
nomials in several variables of differing degrees and term
lengths. Computations on such matrices will call for
subcomputations on the entries which differ dramati-
cally in detail of instruction sequence and in time re-
quired. This makes it difficult to obtain good speedup
on SIMD machines, with important exceptions for spe-
cific problems (see for example Johnson [?]).

On the other hand, with appropriate dynamic
scheduling of tasks and load balancing good speedup
may be obtainable using coarse grained parallelism on
MIMD designs. In our experiments the processors op-
erate asynchronously and communicate through shared
memory. The risk exists that communication costs may
override the benefits of the multiprocessing. However
we have experienced approximately 50% efficiency in
this initial effort (see Section 5 for details). From this
modest experience we offer the modest conjecture that
a factor of 10 speedup can be obtained on a wide range
of computer algebra computations from a 20 processor
machine.

The rest of the paper is organized as follows: Sec-
tion 2 outlines the changes made to the SAC2 library
to support parallel computation. Section 3 gives a brief
overview of the CAD algorithm with references to the
literature, and Section 4 describes the modifications
made to the algorithm in order to parallelize the most
time consuming portion, the extension phase. Section 5
offers the results of some timing experiments and pre-
liminary analysis of the data. Finally, some conclusions
and observations on these experiments are drawn in Sec-
tion 6.

2 Parallelizing SAC2

The CAD algorithm, implemented by Collins and his
students, was written in ALDES and depends on his

extensive library, SAC2, of algebraic procedures.
The first step in this effort was to adapt the SAC2

library for parallel execution on multiple processors.
They are written in ALDES, which is translated into
FORTRAN. The FORTRAN versions are then compiled
and archived appropriately on a given machine and file
system. At run time the routines call each other in
various patterns, including recursive calls. Parameters
and other variables manipulated for the most part are
list structures representing algebraic entities. To handle
the situation, variables are of type integer from FOR-
TRAN’s point of view. They serve as pointers to list
cells. In SAC2 this means they are indices for the global
shared array SPACE.

The other fundamental data structure of the system
is the STACK array. The STACK, for each routine in the li-
brary, holds variables which must be subject to garbage
collection. In SAC2 parlance, these variables are “un-
safe”. The SPACE array holds the list cells which are the
basic units of all the data manipulated by procedures
in the system. The basic need to adapt to the multi-
processor environment is to arrange for a stack for each
process, while maintaining a common SPACE in shared
memory. The stack for each process could be a pri-
vate local entity, but we chose to make the STACK a
global common entity like SPACE. For multiprocessing
it is partitioned into segments, one for each process. If
the STACK array has n elements unused at the time of
multiprocess forking, and the machine has p processors,
then each processor operates with its stack being a seg-
ment of length n/p in the global STACK array. There are
two reasons for this choice. For one, a side effect of the
scheme is that any process can access any other proces-
sor’s stack. This capability is used in some versions of
garbage collection with which we have been experiment-
ing. Secondly, if each processor is to have a private local
stack, there must be an effective way to share that stack
with subroutines. A subroutine must share P ’s stack
when called by P and Q’s stack when called by Q. We
didn’t feel we had an appropriate (relatively machine in-
dependent) mechanism in the FORTRAN available to
us on the Sequent to handle this situation.

An additional consideration in the stack implementa-
tion is the handling of the current stack pointer, INDEX.
In the parallel version there must be an INDEX for each
processor. We handle this by creating an array PINDX
of p stack pointers, one for each process. Subroutines in
the library call IUP when they start. This updates the
INDEX appropriately. We replace this with PIUP, which
uses the processor id to access and update the appropri-
ate entry in PINDX and also set a local variable INDEX.
Then the references to INDEX in the remainder of the
code are valid and the number of modifications needed
is kept to a minimum.

Since a global SPACE array is constantly accessed and
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modified by all processes, there are, of course, some sub-
routines where greater adjustment is required to handle
the mutual exclusion requirements and avoid racing con-
ditions. In particular, routines which modify list struc-
ture (routines which write on SPACE) must be written
carefully. Chief among these is COMP (the SAC2 equiv-
alent of Lisp CONS). Mutual exclusion must be assured
in the section in which COMP detaches a cell from the
available cell list. Secondly, if no cells are available,
garbage collection must be initiated, a process which
affects the whole computation and involves all proces-
sors. At least, this is the case for SAC2’s simple mark
and sweep garbage collector where we make no attempt
to do incremental or local garbage collection.

Our approach to garbage collection depends on the
assumption that all processes will access the available
cell list often (usually through COMP). There is a bar-
rier at the beginning of garbage collection. The as-
sumption is that processors can afford to spin at this
barrier because other processors will soon also need a
new cell, discover there are none, and join the earlier
arrived ones at the barrier. When all processors have
arrived, garbage collection commences. Our first im-
plementation ignored one important situation in which
this assumption (that all processes will seek new cells)
is invalid. This situation occurs when, near the end of
the parallel computation, some processes find no work
left to do (see the section below on the CAD imple-
mentation) and exit. It is not hard to see that such a
process will indeed not seek new cells. Our solution to
this is greedy. We have finished processors spin on a GC
flag. When an unfinished processor discovers the need
for garbage collection, it raises the flag, and finished
processors join the active ones at the barrier and par-
ticipate in garbage collection. Our data indicates that
this solution works well (see Section 5).

Garbage collection itself is done in two phases sep-
arated by a barrier. First each processor marks cells
reachable from its STACK segment, then spins at a bar-
rier until all processes are through marking. Next, each
processor sweeps an assigned region in SPACE, and links
the available cells it obtains into the global available cell
list. The synchronization for the latter is managed by
a lock.

Parallel performance can be heavily dependent on
communication costs. In our situation the most uncer-
tain and difficult to analyze or predict are the effects of
SPACE array accesses. Each processor has a local cache.
A high proportion of cache hits among the memory ac-
cesses is very valuable. In addition, there can be con-
siderable contention on the bus for some memory access
patterns. The data below, though not extensive, fails to
show any serious problem in this area, at least for the
CAD algorithm.

3 Cylindrical Algebraic Decom-
position

Below we give a very brief description of the CAD al-
gorithm, referring the reader to [?] for a thorough dis-
cussion of the algorithm and to [?] for a comprehensive
bibliography of CAD theory and applications and other
related work.

Let A be a finite set of polynomials in r variables
with integer or rational coefficients. Let Er denote the
r-dimensional Euclidean space. The CAD algorithm de-
composes Er into a finite set of cells (disjoint, connected
sets), in which at every point each polynomial in A has
the same sign. This decomposition has two important
properties:

1. It is cylindrical in the following sense: Given a re-
gion (a nonempty connected subset) R of Ek, the
set R × E is called a cylinder (over R). The cells
obtained in the decomposition of Er can be joined
into cylinders over certain regions of Er−1, which
can, in turn, be joined into cylinders over certain
regions of Er−2, and so on.

2. The decomposition is also algebraic in the sense
that the cell boundaries are the zeros of certain
polynomials obtained from the polynomials of A.

The CAD algorithm works in three phases:

1. Projection. From the given polynomials in r vari-
ables, polynomial resultant and discriminant oper-
ations are used to construct new polynomials con-
taining, successively, r− 1, r− 2, ... , 1 variable(s).
The so obtained k-variate polynomials have the
property that their zeros are projections of certain
critical aspects of the (k + 1)-variate polynomials,
such as intersections and tangents to the direction
of projection.

2. Base. The real zeros of the univariate polynomials
obtained in the last step of the projection phase
are used to decompose E1 into cells which are ei-
ther points (corresponding to polynomial zeros) or
open intervals (between the zeros). Since each poly-
nomial in A has the same sign throughout each of
these intervals, a convenient rational sample point
is chosen for each interval.

3. Extension. From the base phase decomposition
of E1, successive decompositions of E2, E3, ... ,
Er are derived. This is done by erecting cylin-
ders over cells of lower dimensions, and partitioning
these cells into regions throughout which appropri-
ate polynomials from the projection phase have the
same sign. During the extension from Ek to Ek+1,
the (k + 1)-variate polynomials (obtained during
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projection) are evaluated at the sample points in
the cells of Ek, giving just univariate polynomials.
The zeros of these polynomials provide the (k+1)st
coordinates that, combined with the k coordinates
of the cells over Ek, determine the decomposition
of Ek+1.

The application of the CAD algorithm to the quanti-
fier elimination problem is briefly as follows: Consider
a logical formula which is comprised of logical connec-
tives and quantifiers and in which the atomic formulae
are equations and inequalities involving polynomials in
r variables. The variables are assumed to range over
real numbers. First consider the case in which the for-
mula contains no free variables. In this decision problem
what matters is the sign pattern— that is, the sequence
of signs (positive, zero, or negative)— of the values of
the polynomials (in some order) at all r-tuples of real
numbers. The CAD algorithm decomposes the entire
r-dimensional real space into a finite number of cells
which are invariant as to sign pattern of the polynomi-
als. Hence, one can determine whether the given for-
mula is true or false from the values of the polynomials
at the sample point of each cell. In the case that there
are free variables in the formula, the algorithm uses the
describing polynomials for each cell to construct a quan-
tifier formula equivalent to the original formula.

4 Parallelizing Cylindrical Alge-
braic Decomposition

We now describe how we have modified the CAD al-
gorithm to run it on the Sequent Symmetry computer.
Sequent provides a FORTRAN preprocessor based on
parallelizing DO loops with the DOACROSS directive [?],
essentially a stripmining technique. This is of no use to
us, since SAC2 is completely devoid of DO loops. Se-
quent also provides a suite of multitasking primitives,
centered around a routine, mfork, which forks a speci-
fied number of identical processes. We used this suite for
our parallelization. Other somewhat more machine in-
dependent approaches are possible, but Sequent’s multi-
tasking system was quite suitable for this pilot project.

The extension phase of the CAD algorithm was cho-
sen for parallelization for two reasons. First, it domi-
nates the time of computation in most instances. Sec-
ond, it consists of completely independent work building
a cylinder over each cell. The clustering versions of CAD
do not have such complete independence, and clustering
was not attempted here. However, we do not think that
clustering is a significant impediment to parallelization.

The sequential CAD algorithm does the extension
phase in a loop controlled by a structured list S of cells.
Each loop iteration takes one cell and produces in its
place the list of cells one dimension higher in the cylin-

der over the original cell. We use dynamic scheduling
to parallelize this loop. First a copy S′ of the structured
list, with entries all zero, is created. Then a subroutine
is mforked to run on p processors. The subroutine on
each processor repeats the following

1. Take one cell from S (under lock),

2. extend the cell, creating a list s of higher dimension
cells, and

3. Replace by s the zero in S′ in the position corre-
sponding to the cell initially taken from S. Note
that this does not have to be synchronized in any
way.

When no cells remain in S, processors spin at a barrier
until all are done. Then a single processor replaces S
by S′ and makes a copy as before in preparation for
extension to the next dimension.

The process is repeated r−1 times as we extend from
1 dimension to r dimesions. When no dimensions re-
main, finished processors spin on a GC flag as men-
tioned in the discussion of GC in Section 2.

The cell lists could very naturally be implemented as
a shared database, in the style of the Linda [?] parallel
programming system.

5 Timing Data and their Inter-
pretation

We ran the sequential as well as the parallel version of
the CAD algorithm on a number of problems taken from
Arnon [?]. The problems attempted are the following:

• Ellipse. This example originates in the problem to
determine whether the ellipse defined by the equa-
tion

(x− c)2

a2
+

(y − d)2

b2
= 1

lies (without touching) wholly inside the circle de-
fined by x2 +y2 = 1. Actually, at present the CAD
implementations have only succeeded in solving the
special case when d = 0. The input formula for
quantifier elimination is therefore

(∀x)(∀y)((ab 6= 0 & b2(x− c)2 + a2y2 − a2b2 = 0)

⇒ x2 + y2 − 1 ≤ 0)

The input presented to the CAD algorithm for the
timings below consists of the following polynomials
obtained by some manual projection and simplifi-
cation [?]:

a, a−1, b, b−1, b−a, c, c−1, c+1, c+a+1, c+a−1,

c− a + 1, c− a− 1, b2c2 + b4 − a2b2 − b2 + a2.
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Problem Time No. of processors
No. Description 1 2 3 4 5 6 7

1 Ellipse, Total 316.01 196.33 153.81 132.20 118.83 109.59 105.26
1 Mw space, GC 18.73 17.08 12.59 9.93 8.63 7.66 7.30
4 GCs Net 297.28 179.25 141.22 122.27 110.20 101.93 97.96

2 Ellipse, Total 314.92 201.26 158.20 137.72 124.01 114.46 110.47
2 Mw space, GC 18.08 16.57 12.00 9.35 8.03 7.07 6.71
2 GCs Net 296.84 184.69 146.20 128.37 115.98 107.39 103.76

3 Ellipse, Total 415.71 352.35 336.54 267.05 255.46 259.62 263.73
4 Mw space, GC 47.61 82.65 103.33 63.35 64.66 72.94 66.68
1 GC Net 368.10 269.70 233.21 203.70 190.81 186.68 197.05

4 Quartic, Total 40.63 33.72 30.04 28.11 26.98 25.98 25.76
2 Mw space,
0 GCs

5 Quartic, Total 42.69 29.72 25.68 23.75 22.46 21.59 21.07
0.2 Mw space, GC 1.77 1.62 1.15 0.88 0.75 0.65 0.61
2 GCs Net 40.92 28.10 24.53 22.87 21.71 20.94 20.46

6 SIAM, Total 14.69 14.68 12.95 12.63 12.10 10.97 11.74
2 Mw space,
0 GCs

7 SIAM, Total 15.01 9.50 7.77 6.95 6.83 6.13 6.13
0.1 Mw space, GC 0.45 0.40 0.29 0.23 0.19 0.16 0.15
1 GCs Net 14.56 9.10 7.48 6.72 6.64 5.97 5.98

8 Pair-5, Total 250.76 150.70 126.93 98.06 96.08 94.69 95.39
2 Mw space, GC 8.52 7.82 5.47 4.12 3.48 3.03 2.85
1 GC Net 242.24 142.88 121.46 93.94 92.60 91.66 92.54

9 Tacnode, Total 1607.06 897.58 865.15 847.00 842.81 835.44 837.01
2 Mw space, GC 94.50 86.36 60.62 45.77 38.66 33.37 31.53
11 GC Net 1512.56 811.22 804.53 801.23 804.15 802.07 805.48

10 Implicit, Total 12976 7021 5110 4936 4883 4810 4781
2 Mw space, GC 629 553 405 322 280 295 286
70 GC Net 12346 6467 4704 4613 4603 4514 4494

11 Pair2, Total 34985 23657 13636 13335 13241 13141 13096
# GCs (194) (196) (199) (199) (199) (199) (199)

2 Mw space, GC 1751 1639 1125 864 763 677 633
Net 33234 22018 12511 12470 12478 12463 12462

Figure 1: Execution times for parallel extension and parallel GC
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• Quartic. The input polynomials for CAD are

p, 8pr − 9q2 − 2p3,

256r3 − 128p2r2 + 144pq2r + 16p4r− 27q4 − 4p3q2.

• SIAM. The input polynomials for CAD are

144y2 + 96x2y + 9x4 + 105x2 + 70x− 98,

xy2 + 6xy + x3 + 9x.

• Pair-5. The input polynomials for CAD are

27xy + 9x2 − 31x + 4,

5y3−14xy2 +15y2 +13x2y +2xy +14y−7x3−3x.

• Tacnode. The input polynomial for CAD is

y4 − 2y3 + y2 − 3x2y + 2x4.

• Implicit The input polynomials for CAD are

505t3 − 864t2 + 570t + x− 343,

211t3 − 276t2 − 90t− y + 345.

• Pair-2 The input polynomials for CAD are

9y2 + 30xy − 22x2 + 21,

2y3 − 12x2y − 12xy − 8y + 11x2 − 2x− 2.

Problem Execution Time Fit & Error
Number Coefficients Coefficients

a b c u v

1 77 241 -1 2.4 .008
2 87 230 -2 3.6 .01
3 297 133 -10 43.7 .10
4 27 14 -1 .9 .02
5 17 26 0 .2 .005
6 15 1 -1 1.2 .08
7 4 11 0 0.3 .02
8 40 208 3 11.0 .04
9 176 1333 73 120.5 .07
10 -453 12897 509 405.2 .03
11 3479 31494 682 4041.1 .12

Figure 2: Timing model for parallel execution

We ran the parallel version of the CAD program by
varying the number of processors from 1 through 7. Al-
though our Sequent Symmetry configuration has eight
processors, there is a system constraint that only seven
processors can be taken over for exclusive use of an ap-
plication program. For the Ellipse problem, we also
varied the size of the SPACE array of SAC2 from 1 to 4

Megawords (Mw). When garbage collection occured in
any run, we recorded the garbage collection time also.
For these runs, we thus have both the total CPU time
and the net time not including garbage collections. The
results are shown in Figure 1 where the times are given
in seconds.

Except where indicated, the GC times are measured
from the time the first processor detects the need for
GC. We also have measured the time the last processor
encounters lack of available list cells, and arrives at GC.
The resulting times are insignificantly lower, indicating
that the approach taken to parallel GC works fine in
this context.

In the Ellipse problem, we note that as the SPACE
array is increased from 1 to 2, then to 4 Mw, the number
of garbage collections decreases from 4 to 2, then to 1.
The net CPU time in significantly higher for the 4 Mw
SPACE array. Since this means that the memory demand
of the program is above the 16 Mb physical memory, the
penalty is probably due to increased memory swapping
to disk. The improvement when we go from 2 Mw to
1 Mw is less pronounced and we conjecture that it is
accounted for by the hardware design. Each processor
has a 64 kb cache. Memory access time is fastest when
(the valid instance of) the data addressed is in one’s
own cache, slower if it is in another processor’s cache,
and still slower when it is in main memory. When the
SPACE array is smaller, a greater portion tends to reside
in the caches. To further test the increased performance
with smaller SPACE, We tried smaller sizes. The Ellipse
problem runs out space when the size is much below
1 Mw. However, Figure 1 shows that the benefit of
smaller space is even more pronounced when the size
0.1 Mw is used for the problems Quartic and SIAM.

To analyze the timing data obtained in our experi-
ments, we looked for a fit to the following model. Sup-
pose there are p processors working in parallel. Then
the time for executing a task should be a function of the
form

a +
b

p
+ cp,

where a, b and c are constants that depend on the task.
Here, a represents the part of the task that cannot be
distributed among the processors, while b represents the
parts that can be simultaneously performed by parallel
processors. Even if the third term is deleted from the
above formula, a non-zero value of a means that the
speed up in performing the task is not perfectly effi-
cient. But, in fact, matters are worse because there are
parts in most tasks for which adding more processors
can actually increase the exceution time. The purpose
of the coefficient c is to account for such parts. For
example, some processor initialization has to be done
sequentially, once for each processor. More seriously,
since in a shared-memory machine such as the Sequent,
all processor/memory communication takes place over a

6



Time seq. No. of processors(parallel)
1 2 3 4 5 6 7

T1 23.13 26.5 26.66 26.26 26.38 26.21 26.35 26.33

T2 46.93 53.90 48.38 44.24 40.94 41.48 40.79 39.36

T3 47.66 54.66 49.16 45.02 41.72 42.26 41.56 40.14

T4 259.44 301.20 188.16 145.63 122.14 110.69 101.76 96.22

GC time 14.94 18.08 16.57 11.99 9.34 8.01 7.05 6.69

T5 271.99 314.59 201.55 159.05 135.55 124.12 115.19 109.66

Speedup .84 1.34 1.71 2.00 2.19 2.36 2.48

Efficiency .84 .67 .57 .50 .44 .39 .35

T5 −GC 257.05 296.51 184.98 147.06 126.21 116.11 108.14 102.97

T2 − T1 23.80 27.04 21.72 17.98 14.56 15.27 14.44 13.03

T4 − T3 211.78 246.54 139.00 100.61 80.42 68.43 60.20 56.08

w/o GC 196.84 228.46 122.43 88.62 71.08 60.42 53.15 49.39

Tp 235.58 273.58 160.72 118.59 94.98 83.70 74.64 69.11

Speedup .86 1.47 1.99 2.48 2.81 3.16 3.41

Efficiency .86 .73 .67 .62 .56 .53 .49

Figure 3: Timing of program segments

common bus, increasing the number of processors cre-
ates bottlenecks in the bus, and increases processing
time. In the above model, we assume that such over-
heads are just proportional to the number of processors
used, ignoring any quadratic or higher-order effects.

Figure 2 shows the values of a, b, and c that have
been derived using a least-squares fit over the data in
Figure 1. The values u, and v provide a measure of the
absolute and relative accuracy of the fit. Specifically,
the derivation of the quantities in Figure 2 is done as
follows: Let A be the 7 × 3 matrix whose ith row is
the vector [1, 1/i, i]. Then x = [a, b, c]T is the best least
squares fit to a solution of Ax = k, where k is the
vector of the last seven numbers in each row of Figure 1.
Furthermore, u is the 2-norm of (Ax−k), the absolute
error of the best solution, and v is u/(2-norm of k).

Note that according to the above formula, the larger
the value of b is compared to a and c for a program, the
closer the program comes to achieving efficient linear
speedup.

Below we compare one of these fits with detailed mea-
surements of parallel and sequential segments of the
computation. Just from the overall timings given in
Figure 1, one can draw some conclusions about this
model. It has some validity when the fit is extremely
good, v < .01 say. But in problem 8 (Pair-5), for ex-
ample, the coefficients suggest a successful parallelism;
b = 208 is substantially larger than a = 40 and c is
negligible. However, Figure 1 shows that the perfor-
mance is essentially uninproved after p = 4, probably
due to the computation time of two or three individual
cell extensions.

We then recorded timings for individual sections of
the computation to reveal the extent to which the model

suggested above describes the sequential and parallel
portions of the computation. In the table below, T1

through T5 denote clock readings at various points of
the computation. The clock reading at the beginning is
zero.

1. T1 is the elapsed time to the beginning of extension.
this first phase is on a single processor.

2. T2 is the end of univariate extension into E2, which
is done in parallel.

3. T3 is the end of a brief single processor stage to
initialize the structured list of cells for bivariate
extension.

4. T4 is the end of the second extension phase into
E3, done in parallel. All garbage collection occurs
during this extension.

5. T5 is the end of the computation, after a final single
processor phase.

6. Tp is (T2 − T1) + (T4 − T3), the total time spent in
the parallel phase.

7. For T5 and Tp the speedups, (sequential time)/(p-
processor time), and the efficiencies of the
speedups, speedup/p, are also shown.

The times for the parallel version of the program on
one processor are about 16% greater than the times for
the sequential algorithm. This applies to the unipro-
cessor sections as well as the (potential) multiprocessor
sections of the parallel algorithm. We suspect that this
may be explained almost entirely by the cost of the lock
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Problem Time No. of processors
No. Description 1 2 3 4 5 6 7

1 Ellipse Expansion 247.26 143.10 104.19 80.31 68.37 61.56 56.70
Idle 0 1.47 1.20 1.62 .85 1.53 1.73

times 0 .43 .33 .65 1.44 1.30
0 .25 .46 .87 .90

0 .04 .58 .79
0 .23 .37

0 .27
0

total 0 1.47 1.63 2.20 2.0 4.65 5.36

2 Tacnode Expansion 1601.49 891.93 859.52 841.42 837.20 829.15 831.41
Idle 0 3.23 576.41 827.22 825.93 819.81 823.65

times 0 7.28 821.35 823.61 819.63 822.70
0 4.51 820.00 815.75 821.90

0 3.82 813.77 817.71
0 3.24 816.35

0 4.36
0

total 0 3.23 583.68 1653.08 2473.36 3272.20 4106.67

Figure 4: Processor idling after exit from extension phase

on AVAIL, the available space list, which is invoked at
every use of COMP.

One may compare the time spent in the non-
parallelized sections of the program, approximately 40
seconds, with the value a = 101 from the previous table.
This shows that 60% of the “sequential” time from the
model T = a+b/p+cp is due to costs of synchronization
and memory contention in the parallel phase. Indeed,
as calculated, the efficiency of the speedup is around
40% and degrading slightly as p increases. We believe
substantial improvements can be made in these figures
by arranging that more of the computation be in local
memory instead of the almost complete dependence on
the global SPACE array as done here. Because of the
highly independent nature of the extension of each cell
in the CAD algorithm this localization should be very
successful. It is less clear how well it will work when one
includes adjacency and clustering calculations, which
also should be done.

To further study the nature of efficiency losses, we
measured the variation in the idle time of the proces-
sors at the end of each extension phase. Extension in-
volves the construction of cylinders over n cells, requir-
ing times t1, ..., tn. The times may be quite variable and
the mapping onto p processors may be far from ideal.
At the worst, the difference between the time the first
processor exits (for lack of more cells to extend) and the
time the last processor exits is the maximum of t1, ..., tn.
Figure 4 shows the idle times that occur as the proces-
sors exit the extension phase. The two problems shown
reveal the extremes. For Ellipse the load is quite well
balanced, whereas for Tacnode, there are two proces-

sors busy for the duration, and p − 2 idle for most of
the time. Thus for Tacnode, at the granularity we are
exploiting, the benefits of parallelism are limited by the
two largest ti. To overcome this would require exploita-
tion of parallelism at a finer granularity, namely in the
individual cell extensions, i.e., in the real root isolation
algorithm.

Also note for Ellipse that since there is little idle time
as the processors exit the extension phase, the efficiency
losses (around 50%) are due to costs spread throughout
the extension computation. They are due to locking
and unlocking, references based on a processor id vari-
able and the like. Parallelism at a finer granularity will
not help here. It will only add overhead costs. For
this type of problem, subprocesses need greater inde-
pendence and lower overhead. The challenge seems to
be to achieve greater independence of the subprocesses
(less dependence on the single shared SPACE) and adap-
tive granularity.

6 Conclusions

We have implemented a parallel version of the SAC2
library, and have successfully parallelized the CAD al-
gorithm. To our knowledge, this is the first parallel im-
plementation of an important, very large computer alge-
bra program. To many computer algebra professionals,
SAC2 is a bit unattractive because of its FORTRAN
base and primitive interface. But the FORTRAN code
of SAC2 turned out to be a blessing in disguise for us,
because FORTRAN fits quite naturally in the Sequent
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parallel programming environment. Of course, a C-
based computer algebra system, such as Maple, would
also be relatively easy to parallelize. But as yet the
CAD algorithm has not been written in any C-based
system. To parallelize a Lisp-based system (e.g. RE-
DUCE or Macsyma) would be rather difficult at present.
Although there exist certain parallel versions of Lisp,
the differences in constructs between sequential and par-
allel Lisps would require one to essentially recode major
parts of the system in order to parallelize it.

When new procedures are written in ALDES, our ap-
proach requires some manual modification to the inter-
mediate FORTRAN code. It would be desirable, and
not terribly involved, to modify the ALDES translator
to handle the needed variant forms for parallelism.

At the present state of parallel programming tools
and environments, the parallelization of a large program
takes much effort. Required is a thorough analysis of
the sequential code in order to determine parallelizable
parts of algorithms, critical sections, variable classifica-
tion with respect to their locality to processes and their
different modes of access by processes, etc. Moreover,
each new architecture and operating environment seems
to require all this work to be redone. For this reason, we
are quite intrigued by, and plan to experiment with, the
Linda system [?] which promises to be an architecture-
independent environment for writing parallel programs.

Our implementation seems to have a 40–50% effi-
ciency (the ratio of speed-up to the number of proces-
sors used). Although we would certainly like to improve
it, we feel that an order of magnitude speed-up is pos-
sible even with the current implementation on a fully
configured machine.
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