

A COMBINATORY LOGIC MODEL

OF

PROGRAMMING LANGUAGES

by

S. Kamal Abdali

A thesis submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN

1974

ii

ACKNOWLEDGMENT

I would like to thank Professor George Petznick for the

advice, guidance, and constructive criticism I received from

him during the research for this thesis. I am also grateful

to Professors Donald Fitzwater, Lawrence Landweber, and

Edward Moore for being on my examination committee and

offering valuable suggestions. My special appreciation goes

to Professor Tad Pinkerton for helping me during some

desperate moments.

I also acknowledge my indebtedness to the Courant

Institute, where most of this work was done, for a

stimulating research environment, and to the AEC Computing

Center, for the computing facilities used in the

experimental verification of parts of this model.

iii

A COMBINATORY LOGIC MODEL OF PROGRAMMING LANGUAGES

S. Kamal Abdali

Under the supervision of Assistant Professor George W.
Petznick

A simple correspondence is presented between a large

subset of the ALGOL 60 language and the combinatory logic.

With the aid of this correspondence, a program can be

translated into a single combinatory object. The

combinatory object representing a program is specified, in

general, by means of a system of reduction relations among

the representations of the program constituents. This

object denotes, in terms of the combinatory logic, the

function that the program is intended to compute.

The model has been derived by using intuitive,

functional interpretations of the constructs of programming

languages, completely avoiding the notions of machine

command and address. In particular, the concepts of program

variable, assignment, and procedure have been accounted for

in terms of the concepts of mathematical variable,

substitution, and function, respectively.

High-level programming language features are represented

in the combinatory logic directly, not in terms of the

representations of machine-level operations. Input-output is

treated in such a manner that when the representation of a

iv

program is applied to the representations of the input items,

the resulting combination reduces to a tuple of the

representations of the output items.

The applicability of the model to the problems of

proving program equivalence and correctness is illustrated

by means of examples.

Approved by George W. Petznick

(signed)

v

CONTENTS

 Page

Chapter 1. Introduction 1

 1.1 Preliminary Remarks 1

 1.2 Background 5

Chapter 2. The Combinatory Logic 11

 2.1 Morphology and Transformation Rules 11

 2.2 Functional Abstraction 18

 2.3 The Lambda-Calculus 31

 2.4 Additional Obs 38

Chapter 3. Basic Programming Features 57

 3.1 An Overview 57

 3.2 Constants, Operations, Relations 60

 3.3 Variables 64

 3.4 Expressions 71

 3.5 Assignments 76

 3.6 Compound Statements 82

 3.7 Blocks 86

 3.8 Input-Output 91

 3.9 Programs 94

 3.10 Conditional Statements 97

 3.11 Arrays 99

vi

Chapter 4. Iteration and Jump Statements 105

 4.1 Recursive Specification of Obs 105

 4.2 Iteration Statements 111

 4.3 Jump Statements 116

Chapter 5. Procedures 123

 5.1 F-procedures 123

 5.2 Call-by-name, Side-effects 126

 5.3 Integer Parameters 128

 5.4 Label Parameters 145

Chapter 6. Conclusion 147

References 150

1

CHAPTER 1

INTRODUCTION

1.1 Preliminary Remarks

Before we can model programming languages, we have to be

definite about what is to be regarded as the meaning of a

program. In our view, the meaning of a program is a function.

A program prescribes the computational steps which produce the

value of some function corresponding to a given value of the

function argument. It is precisely the function intended to be

computed by a program that we take to be the meaning of the

program. Consequently, in order to model programming languages

mathematically, we seek to formulate rules for deriving the

mathematical definitions of functions from the computational

representations of functions provided in the form of programs.

The problem of obtaining the mathematical definition of a

function from the text of a program computing that function is

quite non-trivial. To describe computations, programming

languages make use of a number of concepts that are not present

in the customary mathematical notations for representing

functions. Central to the present-day programming languages --

and the main source of difference between the diction of

mathematics and that of programming languages -- is the notion

of a computer memory. Consider, for example, the concept of

program variable. Whereas a mathematical variable denotes a

2

value, a program variable denotes an address in the computer

memory. Or, compare the notion of substitution used in the

functional calculi with the notion of assignment used in

programming languages. Again, whereas the former is concerned

with values, the latter is concerned with addresses.

Similarly, the notion of function used in mathematics is

radically different from the notion of procedure used in

programming languages; the evaluation of functions requires

straightforward substitution of the argument values in the

functional definitions, while the execution of procedures

requires rather elaborate manipulation of information involving

a complex of memory locations.

For a long time now, two types of constituents have been

distinguished in programming languages [17] -- the descriptive

elements, such as expressions and functions, and the imperative

elements, such as assignments, instruction sequencing, and

jumps. In addition, high-level programming languages also

contain declarative elements, such as type, array, and block

declarations, and name and value specifications for procedure

parameters. Although the descriptive and the declarative

elements are often lumped together [17,36], we feel that these

two classes should be recognized as quite distinct; while the

purpose of the former is mainly to designate values, the

purpose of the latter is to remove ambiguities and to impose

structure on program and data. Indeed, the declarative

features often serve to interconnect the descriptive and the

3

imperative components of a program.

The imperative constituents have their origin in machine

languages from which the present-day high-level programming

languages have evolved. The descriptive constituents have been

introduced for ease and conciseness of notation, as well as for

making the programs resemble more closely the functions they

compute. The addition of such constituents to programming

languages thus represents a step away from the machine and

towards mathematics. The declarative constituents have been

added for, ostensibly, improving the clarity and transparency

of programs. But in actual fact, by introducing sophisticated

address-related concepts, most declarative features represent a

step back to the machine, and their presence often makes the

recognition and extraction of the functional meaning of a

program more difficult than would be in their absence.

The descriptive features of programming languages lend

themselves to mathematical interpretation in quite a natural

manner. It is the presence of imperative and declarative

features that obscures the functional meaning of a program.

And the essence of that obscurity is in the dependence of these

features upon the concept of computer memory.

Thus, the key to the extraction of functional meaning of

programs lies in modelling programming constructs without using

the idea of memory address. This is the task that we undertake

to do in the present dissertation. In particular, we seek to

explain program variables in terms of mathematical variables,

4

the operation of assignment in terms of substitution, and

procedures, programs, and, in general, all program statements

in terms of functions.

To express programming constructs, we make use of the

notation and terminology of ALGOL 60 [27], with a few,

explicitly stated, extensions. As the mathematical theory for

modelling the programming constructs, we make use of the

combinatory logic [8,9,33,34], originated by Schönfinkel and

developed principally by Curry. A remarkable feature of this

theory is the absence of variables. Nevertheless, functions

can be represented by the objects of this theory in a natural

manner. Thus, by using the combinatory interpretation of

programming languages, we seek to eliminate variables

altogether, program-related or mathematical.

5

1.2 Background

A number of combinatory logic (or, related, lambda-

calculus) models of programming languages have appeared in the

literature. The most well known of these are due to Landin.

In [16], Landin uses the lambda-calculus to model the semantics

of expression evaluation in programming languages. He also

prescribes the semantics of the lambda-calculus itself by means

of an interpreter, the SECD machine, to evaluate lambda-

expressions. But in extending his model to include the

imperative features of ALGOL 60, he elects [17] to supplement

the lambda-calculus and its evaluator with such concepts as the

assigner, the jump operator, and sharing. Due to their

pioneering nature and their thoroughness of analysis, Landin’s

papers have greatly influenced the subsequent work on

programming semantics. But they have also been instrumental in

creating the rather unfair impression that the pure lambda-

calculus is not an appropriate medium for representing the

imperative notions of programming languages (see for example

[2]).

The direct superimposition of imperative concepts on the

lambda-calculus seems to us unsuitable on several grounds.

First of all, there is no guarantee of the preservation of

consistency in the augmented calculus. Then, by defining the

new calculus in terms of the sequentially operating “sharing

machine”, one throws away the most important property of the

lambda-calculus, the Church-Rosser property [9], which implies

6

that the values of lambda-expressions are independent of their

evaluators. Finally, the resulting model of programming

languages forces one to identify a program with its execution

trace; it fails in capturing the abstract function underlying

the computation expressed in the program.

Stratchey [36] also uses the lambda-calculus to model

programming language semantics. Unlike Landin, he under-takes

to represent the imperative as well as the declarative and

descriptive notions of programming languages in terms of the

descriptive concepts of the lambda-calculus. To account for

the notion of assignment, however, he postulates a number of

primitives to represent the generalized concepts of address and

the related memory fetch and store operations. Thus, by not

going as far as to eliminate program variables in favor of

mathematical variables, Stratchey’s model is again

computational rather than functional. As Burstall points out

in describing another lambda-calculus model [5] of programming,

it is unnecessary to introduce any assignment-related concepts

as primitives. Indeed, Burstall shows how assignments can be

naturally modelled by the lambda-calculus operation of

substitution. We remark that our approach is closest to

Burstall’s in spirit, though we adopt a different method of

representing assignments.

Orgass and Fitch [28] have developed a theory of

programming languages in a system of the combinatory logic.

They represent the computer memory as an n-tuple and the

7

machine state transitions caused by the execution of

instructions as functions on n-tuples. Their representation of

programming languages is in rather general terms, and it is not

clear how it can be used to obtain the representation of

specific programs. The main drawback in their model seems to

be the lack of treatment of declarative features, so that their

discussion of programming languages is applicable, for the most

part, to machine-level languages only.

A number of researchers have used the combinatory logic or

the lambda-calculus to model only some important programming

constructs rather than full-fledged programming languages. In

[26], Morris explores the concepts of recursion and types in

the lambda-calculus, but his work is also relevant to these

concepts as they occur in programs. Ledgard [18] describes a

model of type checking in which lambda-expressions are used to

abstract out the type relations within a program. In addition,

we mention the work of Böhm [4], Petznick [29], Milner [25] and

Henderson [11], who obtain the representations of various

elementary programming constructs and schematic programs in the

combinatory logic or the lambda-calculus.

The semantics of the lambda-calculus itself has attracted

considerable attention. We have already mentioned Morris’

results on recursion and types [26] and Landin’s SECD machine

[16] for evaluating lambda-expressions. The formal

specification of several lambda-calculus interpreters

(originally due to Wegner [37]), and proofs of their mutual

8

equivalence have been given by McGowan [24]. The Wegner-

McGowan and Landin machines employ the so-called “call-by-

value” strategy of evaluating the right component of an

application before the left one. Consequently, none of these

machines is a true normal-form reducer for lambda-expressions.

A computer to reduce the objects of the combinatory calculus to

their normal forms has been designed and proved correct by

Petznick [29]. This computer consists of stack-structured

control registers and tree-structured memory, permits shared

memory representations of equiform objects, and has provisions

for incremental programming and multiple processing. Reynolds

[31] defines and interrelates a number of interpreters for the

lambda-calculus and for its various extensions with programming

language features.

Knuth [15] approaches the semantics of the lambda-

calculus from the viewpoint of his general theory of the

semantics of context-free languages, in which the meanings of

sentences are built up, in the course of sentence generation,

from the attributes associated with non-terminal symbols.

Finally, the most abstract and incisive work on the semantics

of the lambda-calculus has been done by Scott (e.g., [35]) as

part of a very general theory of computation. Concerned with

an abstract or functional explanation rather than with a

computational explanation, Scott represents a lambda-

expression as the limit of a certain sequence of constructions

on complete lattices. His theory succeeds in providing very

9

convincing answers to the problems related to recursion and

self-application in the lambda-calculus.

Combinatory models constitute but a minute fraction of the

total work that has been done so far on the semantics of

programming languages. We mention just a few of the other

models. In [10], Floyd suggests the method of semantic

definition of programming language statements by means of pairs

of conditions that hold just before and after the statement

execution. Apparently, little use has been made of Floyd’s

method in the definition of programming languages. But his

idea of representing the effect of execution of program

statements by assertions has had diverse and far-reaching

consequences. (For example, it serves as the basis of most

program proving schemes [20]). Of all the methods of defining

programming languages, the most elaborate and the most

extensively applied is the “Vienna Method” [19,21] -- so called

because it was developed at the IBM Vienna Laboratory for the

semantic specification of the PL/l language. In this method,

programming constructs are represented in terms of the (non-

deterministic) state transitions of a machine; it thus

constitutes a computational, rather than a functional, approach

to semantics.

Among the purely functional semantic models of programming

languages based on theories other than the combinatory logic,

the most notable are: Burstall’s [6] representation of programs

by combining the Floyd-type assertions associated with the

10

programs into the formulas of first-order predicate calculus;

and Manna and Vuillemin’s [22] Scott-theoretical interpretation

of programming constructs as minimal fixed points of “recursive

programs”.

To conclude, we mention the axiomatic approach to

programming semantics, which is different from both functional

and computational approaches. It consists in devising the

systems of axioms and inference rules which apply directly to

programming language constructs, and in which the properties of

programs may be derivable as theorems. This approach obviates

the circuitousness involved in deriving the same properties when

one uses a “programming model” (in which case, one first

represents programs as the objects of some mathematical theory,

and then works with these representations to derive the

properties). Igarashi [13] and deBakker [2] are the first to

propose sets of axioms dealing with elementary programming

constructs; their systems are, however, rather complex. A very

simple and elegant axiom system (in which Floyd’s ideas again

find a new expression) has recently been presented by Hoare [12].

11

CHAPTER 2

THE COMBINATORY LOGIC

This chapter summarizes the properties of the combinatory

logic [8,9,33,34] which will be utilized later in the modelling

of programming languages. The discussion is in terms of a

particular system SK consisting of only two primitive objects

(S and K), a primitive operation (combination) to form new

objects from given ones, and two primitive relations (S- and K-

contractions) between objects.

2.1 Morphology and Transformation Rules

The alphabet for SK consists of the symbols “S”, “K”, “(”,

and “)”. As there is no possibility of confusion, we let “S”

and “K” also denote the words consisting solely of S and K,

respectively. If a and b denote words over the alphabet, then

we denote by “(ab)” the word obtained by concatenating the

symbol “(”, the word a, the word b, and the symbol “)”. Of all

the words over the SK alphabet, we distinguish certain words by

means of the

(1-1) Definition. The (combinatory) obs are formed according

to the following rules:

(1) S and K are obs.

(2) If a and b are obs, then (ab) is an ob.

12

(3) The only obs are those specified by (1) and (2).

S and K are primitive obs; any other ob, which is

necessarily of the form (ab), is a composite ob. The composite

ob (ab) is the application of a to b, or the combination of a

and b, the obs a and b being its left and right immediate

components, respectively. It follows that the immediate

components of an ob are uniquely determined and are non-

overlapping. A component of an ob is either the ob itself or a

component of an immediate component of the ob. A proper

component of an ob is a component which is not the ob itself.

The length of an ob is the number of symbols S and K in it.

Example. The application of the ob ((KS)((SS)K)) to K is the

composite ob (((KS)((SS)K))K) of length 6, some of whose proper

components are K, S, (KS), and ((SS)K). The same ob S has

three different occurrences as components of the above ob; all

these occurrences are to be regarded as different components.

We use the notation a ≡ b to indicate that the obs a and b

are equiform, that is, spelt the same over the SK alphabet. We

also use this notation for introducing a as a new name for the

ob b. We may abbreviate obs by omitting parentheses under the

convention that any omitted parentheses are to be re-inserted

by association to the left. For example, ((SS)(SK)) maybe

abbreviated to (SS)(SK) or SS (SK).

 We now state a number of rules for transforming obs.

13

(1-2) Definition. For all obs a, b, and c:

(1) The ob Sabc S-contracts to the ob ac(bc); in symbols,

Sabc →S ac(bc).

(2) The ob Kab K-contracts to the ob a; in symbols,

 Kab →K a.

If a →S b, then a and b are called, respectively, the S-redex

and S-contractum corresponding to each other. K-redex and

K-contractum are defined analogously. A redex is either an

S-redex or a K-redex.

Let an ob b be obtained from an ob a by replacing a

component c of a by an ob d. If it is the case that c →S d or

c →K d, then a immediately reduces to b (in symbols, a →im b).

For example, K(SKSa)Sb →im SKSab, and also K(SKSa)Sb →im

K(Ka(Sa))Sb, depending on the redex selected for contraction.

(1-3) Definition. An ob a is irreducible or in normal form if

there is no ob b such that a →im b.

Thus, no component of an irreducible ob may be a redex.

Some examples of irreducible obs are S, K, KS, SKK, and

SS(S(SSK)K).

(1-4) Definition. An ob a reduces to an ob b, denoted a → b,

if there exist obs a0, a1,..., an, for some n > 0, such that

(1) a ≡ a0 ,

(2) b ≡ an ,

14

(3) ai →im ai+1 , for 0 ≤ i < n .

Example. SKSKSKabc → ac(bc), since

SKSKSKabc →im KK(SK)SKabc →im KSKabc →im Sabc →im ac(bc).

If a →S b, then we also say that b S-expands to a, and

write b ←S a. In a similar manner, we define

K-expansion (←K), immediate expansion (←im), and expansion

(←).

(1-5) Definition. An ob a is interconvertible with an ob b,

denoted a ↔ b, if there exist obs a0,a1,...,an, for some

n > 0, such that

(1) a ≡ a0 ,

(2) b ≡ an ,

(3) ai →im ai+1 or ai
 ←im ai+1 , for 0 ≤ i < n.

Example. SKKa ↔ SSSSKa, since SKKa →im Ka(Ka) →im a

←im Ka(SSKa) ←im SK(SSK)a ←im SS(SS)Ka ←im SSSSKa.

Reduction (→) and interconvertibility (↔) are related

by the well-known

(1-7) Theorem (Church-Rosser) [9]. If a ↔ b, then there

exists an ob c such that a → c and b → c.

(1-8) Corollary. If the obs a and b are irreducible,

then a ↔ b if and only if a ≡ b.

(1-9) Definition. A normal form of an ob a is an irreducible

ob b, if one exists, such that a ↔ b. An ob is normal

15

if it has a normal form.

From Theorem 1-7 and Corollary 1-8, it immediately

follows that:

(1-10) Theorem. If an ob is normal, then its normal form is

unique. Moreover, if b is the normal form of a, then a → b.

That is, it is possible to discover the normal form of a

normal ob by a sequence of contractions alone, starting from

the given ob. Of course, there are obs that are not normal.

An example of such an ob is (aaa), where a ≡ SSK. It is easily

seen that all possible reductions of the ob (aaa) either keep

producing longer and longer obs or eventually lead to (aaa)

again, so that they will continue indefinitely without ever

reaching an irreducible form. Moreover, there are obs that are

normal but for which not every reduction terminates in a normal

form. This is illustrated by the ob KS(aaa), with a defined as

above; its normal form S cannot be reached as long as

reductions are carried out only inside the component (aaa).

Fortunately, there exists a deterministic reduction procedure

such that, when applied to normal obs, it always arrives at

their normal forms in a finite number of steps. It is as

follows:

(1-11) Standard Order Reduction Algorithm (Church-Rosser). [9)

To obtain the normal form of a normal ob, start with the ob and

successively apply contractions of the leftmost redex, until no

further reduction is possible.

A modification of the above scheme is used in Petznick’s

16

combinatory computer [29], a hypothetical machine for reducing

obs to normal form. Obs may be so represented in the memory of

this machine that all equiform components of an ob may have but

one internal representation. The reduction takes place by

contracting the leftmost redex; but as a consequence of shared

representations, several equiform redexes may be contracted

simultaneously.

On account of Definition 1-9 and Theorem 1-10, it seems

reasonable to regard the normal form of an ob as the “value” of

the ob, and the process of normal form reduction as

“evaluation”. Consequently, we may regard mutually

interconvertible normal obs as “equal” since they have the same

value. This view of value and equality is similar to the one

taken in other calculi. For example, among the equal

arithmetic expressions 2x2+3x4, 4+12, and 16, the last one is

distinguished in being “irreducible” by the rules of

arithmetic, and thus it is regarded as the value of the three

expressions. For obs as well as for arithmetic expressions, it

so happens that the value is obtainable by a sequence of

reductions only, and it is unique despite the possible

nondeterminism involved in the order of reductions. But unlike

the case for arithmetical expressions, there is no algorithm to

decide whether or not two given obs have the same value (i.e.,

are interconvertible).

The notion of interconvertibility is generalized in the

17

following

(1-12) Definition. An ob a is n-interconvertible to an

ob b, in symbols a ↔n b if for all obs c1,...,cn ,

acl...cn
 ↔ bc1...cn

 Clearly, a ↔n b implies a ↔m b for all m > n; but

the converse does not hold. For example, we have SKS ↔1 SKK,

since SKSc → c ← SKKC for all c. Yet SKS ¬↔0 SKK (i.e.,

SKS ¬↔ SKK) by Corollary 1-8, as the two obs are irreducible

but not equiform. Indeed, it can easily be shown that for a

given normal ob a and an integer n ≥ 1, there exist infinitely

many obs b with distinct normal forms such that a ↔n b but,

for all m < n, a ¬↔m b.

18

2.2 Functional Abstraction

Our interest in SK derives from the fact that we can

represent programming language constructs (e.g., expressions,

statements, programs) by obs, and the processes required in the

execution of programs (e.g., substitution, expression

evaluation, procedure application) by the reduction operation.

Such a representation is possible because

1. Programming constructs can be regarded intuitively as

functions (in a special sense of the word, explained

below), and

2. Functions can be represented by obs.

This section will describe how to represent functions as obs.

We will assume that a function F is defined by means of a

functional equation of the form

F(x1,...,xn) = E

in which E is an expression that may contain constants,

variables, and already defined functions. The variables

x1,...,xn are called the formal arguments of the function F.

To obtain the value of this function for a list of expressions

given as actual arguments, the actual arguments are substituted

in place of the corresponding formal arguments, and the

resulting expression is evaluated.

Confined for the moment to the functions of one argument

only, our basic approach to the SK representation of functions

may be stated as follows: Let F be a given set of

19

one-argument functions to be represented, and let A be the

union of the domains and ranges of the given functions. Then

we choose obs to represent the members of F and A so as to

satisfy the following condition. For all F in F and a,b in A,

and their respective SK representations F, a, b, if F(a) = b,

then (F a) → b.

The above representation applies as such to one-argument

functions only. But a basic idea of the combinatory calculus,

due to Schönfinkel [34], is to regard even the functions of

several arguments as just one-argument functions. This becomes

possible if the domains and ranges of one-argument functions

are permitted to contain one-argument functions themselves. To

see how this idea works, suppose F is a function of two

arguments, and let Gx (for a given x) and H be one-argument

functions such that

Gx(y) = F(x,y) ,

 H(x) = Gx .

Then for any arguments a and b, we have

F(a,b) = Ga(b) = [H(a)](b)

Now F is identified with the one-argument function H, and,

consequently, F(a,b) with [H(a)](b). Hence, designating the

representative obs by underlining the names of the represented

functions or constants, we may choose F = H, thereby

20

representing F(a,b) by ((H a)b), i.e., (F a b). Note that

(F a) represents H(a), i.e. the function Ga . In general, if F

is a function of n arguments, then:

(F a1...am) for m < n represents the function G such

that G(xm+1,...,xn) = F(a1,...,am,xm+1,...,xn) , and

(F a1...an) represents F(a1,...,an).

With the above interpretation of functions in mind, every

expression involving only functions and constants but not

variables, written in the customary functional notation using

function application and composition, is representable in SK,

provided that its constituent functions and constants are

representable. For example, we may represent the expression

F(G(a,b),H(J(c),d)) by the ob F(G a b)(H(J c)d), and carry out

the evaluation of the former entirely within SK by reducing the

latter. But in order to extend our representation to the

expressions involving variables also, we require a

generalization of obs described next.

We adjoin a denumerable collection of symbols called

indeterminates to the alphabet of SK. We do not specify these

symbols; but it will always be possible to infer from the

context whether or not a symbol is an indeterminate. Of all

the words over the augmented SK alphabet, we characterize an ob

form to be a word that either consists of a single

indeterminate or S or K, or is of the form (e1 e2),

21

where e1 and e2 are ob forms (Cf. Definition 1-1). All

the definitions, notational conventions, and properties related

to obs, as given in the previous section, generalize in an

obvious manner for ob forms.

Given an ob form e and an indeterminate x, we say that e

contains x, or x occurs in e, in symbols, x oc e, if x is a

component of e; x oc/ e if it is not the case that x oc e.

(2-1) Definition. Let e,f1,...,fn be ob forms and x1,...,xn be

distinct indeterminates. Then the result of (simultaneous)

substitution of f1 for x1, f2 for x2 ,..., fn for xn in e,

denoted

sub [f1,x1;...;fn,xn;e]

is defined by induction on n and the structure of e as follows:

(1) sub [f1,x1;e]

 e , if x1 oc/ e,

 ≡ f1 , if e ≡ x1

 (sub [f1,x1;g]sub [f1,x1;h]),
 otherwise, where e ≡ (gh).

(2) sub [f1,x1;f2,x2;...;fn+1,xn+1;e]

≡ sub [f1,z; sub [f2,x2;...;fn+1,xn+1;sub [z,x1;e]]]

where z is an indeterminate which is distinct from

each of x1,...xn and which does not occur in any

of e, f1, ..., fn .

22

As a consequence of the definitions of reduction and

substitution, we have

(2-2) Lemma. If e → e’, then

sub [f1,x1;...;fn,xn;e] → sub [f1,x1;...;fn,xn;e’].

(2-3) Definition. Given an ob form e and indeterminates

x1,...,xn, for some n ≥ 1, an abstract of e with respect to

x1,...,xn is an ob form f such that

 (1) xi oc/ f , l ≤ i ≤ n ,

 (2) fx1...xn → e.

Example. For e ≡ xyz(y(xy)z), we have

 e ← S(xy)(y(xy))z ← SSy(xy)z ← S(SS)xyz .

Hence, the ob S(SS) is an abstract of e with respect to x,y,z;

the ob forms S(SS)xy, SSy(xy), and S(xy)(y(xy)) are all

abstracts of e with respect to z.

Let f be an abstract of an ob form e with respect to the

indeterminates x1,...,xn. The relations (1) and (2) of the

above definition are satisfied. Applying Lemma 2-2 to (2), we

have for all ob forms g1,...,gn ,

sub [g1,x1;...;gn,xn;fx1...xn] → sub [g1,x1;...;gn,xn;e].

Because of (1), we can simplify the left-hand side in the

above relation and restate the relation as follows:

If f is an abstract of e with respect to x1,...,xn, then for

23

all ob forms g1,...,gn, we have

 f g1...gn → sub [g1,x1;...;gn,xn;e]. (*)

Further properties of abstracts will be described later.

 Earlier in this section, we have noted how the expressions

that contain already represented constants and functions can be

represented by obs. With variables represented by

indeterminates (possibly, with the same symbolic denotation),

we can extend that scheme to represent by ob forms the

expressions that contain variables in addition to constants and

functions. Now consider a function F defined by the functional

equation

F(x1,...,xn) = E ,

in which E is an expression containing constants, variables,

and already defined functions. The value of F for given actual

arguments G1,...,Gn is computed by simultaneously replacing x1

with G1, ..., xn with Gn in E, and then evaluating the resulting

expression. Let e, g1,...,gn be the ob forms representing the

expressions E, G1,...,Gn, respectively. Then we would like to

represent the function F by an ob form (or, if possible, by an

ob
1
) f satisfying

1 It will soon become clear that if, in the functional

equation F(x1,...,xn) = E defining F, the expression E does
not involve any variable other than x1,...,xn, then F is
representable by an ob.

24

the relation

fg1...gn → sub [g1,x1;...;gn,xn;e]

Furthermore, the above relation must hold for all choices of ob

forms g1,...,gn. But we have just seen that this is precisely

the case if f is an abstract of e with respect to x1,...,xn.

Hence, given a functional equation defining a function, any

abstract of the ob form representing the right-hand expression

in the equation with respect to the formal arguments can be

taken as the SK representation of that function.

From the property (*) of abstracts obtained earlier, it

follows that all abstracts of the same ob form with respect to

the same n indeterminates are mutually n-interconvertible

(Definition 1-12). Also, an ob form which is n-

interconvertible to an abstract of a given ob form with respect

to n given indeterminates is itself one such abstract.

To designate an arbitrarily chosen abstract of the ob form

e with respect to the indeterminates x1,...,xn , we employ the

notation (A
a
x1...xn:e). This notation may be abbreviated by

omitting parentheses under the convention that the ob form to

the right of the colon sign extends as far to the right as is

consistent with its being well formed. For instance, we may

abbreviate (A
a
xy:(A

a
z:(x(xy)z)) to A

a
xy:A

a
z:x(xy)z. We state

below some important properties of abstracts, including (*) for

completeness; some simple arguments pertaining to the

25

substitution process suffice to establish these properties:

(2-4) Theorem. Let e, e’, g1,...,gn be ob forms and x1,...,xn

distinct indeterminates for some integer n ≥ 1.

Then:

 (1) (A
a
x1...xn:e) g1...gn → sub [g1,x1;...;gn,xn;e].

 (2) If y1,...,yn are distinct indeterminates and

 yi oc/ e for 1 ≤ i ≤ n, then

 A
a
x1...xn:e ↔n A

a
y1...yn:sub [y1,x1;...;yn,xn;e].

 (3) a) If x oc/ e for all 1 ≤ i ≤ n, then

 A
a
x1...xn:ex1...xn ↔n e.

b) Generally, for an integer m ≤ n, if xi oc/ e for

m ≤ i ≤ n, then

 A
a
x1...xn:exm...xm ↔n A

a
xl...xm-l:e.

(We consider the right-hand side to be simply e when

m = 1.)

(4) A
a
x1...xi-1:A

a
xi...xn:e ↔n A

a
x1...xn:e, 1 ≤ i ≤ n.

(5) If e ↔ e’, then A
a
x1...xn:e ↔n A

a
x1...xn:e’.

Since a function of n arguments can be represented

equally well by any one of a certain class of n-inter-

convertible obs, the above theorem suggests several ways of

choosing simple functional representations. For example, to

represent the function F given by F(x1,...,xn)= E, one can take

the ob A
a
x1...xn:e’, where e’ is the normal form

26

of the ob form e representing the expression E.

 The properties given in Theorem 2-4 hold for all

abstracts. We may expect that by choosing abstracts in some

specific manner, these properties could be strengthened, thus

simplifying our work with the abstracts. That this is indeed

the case is shown by the following description of (a modified

version of) Rosser’s abstraction algorithm [33] and the

improved properties of the associated abstracts.

(2-5) Definition. Let e be an ob form and x1,...,xn be

indeterminates. The R-abstract of e with respect to x1,...,xn,

denoted (A
R
x1...xn:e), is defined by induction on n and the

structure of e as follows:

(1) (A
R
x1:e)

 Ke , if x1 oc/ e,

 SKK, if e ≡ x1,

≡ f , if e ≡ (fx1) and x1 oc/ f,

 S(A
R
x1:f)(A

R
x1:g), otherwise, where e ≡ (fg) .

 (2) (A
R
x1x2...xn+1:e) ≡ (A

R
x1: (A

R
x2...xn+1:e)).

Again we may omit parentheses in writing R-abstracts with

the understanding that the ob form to the right of the colon

extends as far to the right as its well-formedness would

permit.

27

Example.

A
R
z:xz(yz) ≡ S(A

R
z:xz)(A

R
z:yz) ≡ Sxy,

 A
R
yz:xz(yz) ≡ A

R
y:A

R
z:xz(yz) ≡ A

R
y:Sxy ≡ Sx,

 A
R
xyz:xz(yz) ≡ A

R
x:A

R
yz:xz(yz) ≡ A

R
x:Sx ≡ S,

A
R
x:xy ≡ S(A

R
x:x)(A

R
x:y) ≡ S(SKK)(Ky) .

We obviously have x oc/ A
R
x:e, and, in general, for all

1 ≤ i ≤ n, xi oc/ A
R
x1...xn:e . Note also that for all

indeterminates y, if y oc/ e, then y oc/ A
R
x1...xn:e. Thus, if

the ob form e contains no indeterminates other than xl,...,xn,

then A
R
x1...xn:e is just an ob.

(2-6) Lemma. If, for all 1 ≤ i ≤ n, xi oc/ f and y ¬≡ xi, then

 sub [f,y;A
R
x1...xn:e] ≡ A

R
x1...xn:sub [f,y;e] .

Proof. Repeated application of Curry’s Corollary 4.1 [9, p.

208].

(2-7) Theorem. Let e, e’, g1,...,gn be ob forms and xl,...,xn

distinct indeterminates for some integer n ≥ 1.

Then:

(1) (A
R
x1...xn:e)g1...gn → sub [g1,x1;...;gn,xn;e].

(2) If y1,...,yn are distinct indeterminates and yi oc/ e

for 1 ≤ i ≤ n, then

 A
R
x1...xn:e ≡ A

R
y1...yn: sub [y1,x1;...;yn,xn;e].

(3) a) If xi oc/ e for all 1 ≤ i ≤ n, then

A
R
x1...xn:ex1...xn ≡ e.

b) Generally, for an integer m ≤ n, if xi oc/ e

28

for m ≤ i ≤ n, then

 A
R
x1...xn:exm...xn ≡ A

R
xl...xm-l:e.

(The right-hand side is considered to be

simply e when m = 1.)

(4) A
R
x1...xi-1:A

R
xi...xn:e ≡ A

R
x1...xn:e, 1 ≤ i ≤ n.

(5) If e ↔ e’, then

 A
R
x1...xn:e ↔n A

R
x1...xn:e’ .

Proof. For the case n = 1, parts (1) and (2) can be

verified by induction on the structure of e, and

part (3) is true by the definition of A
R
 . For n > 1, they

can be proved by induction. Assuming (1) true for n ≤ k, we

show it for n = k+l, as follows. Choose an indeterminate z

such that z oc/ e and, for 1 ≤ i ≤ k+l, z ¬≡ xi and z oc/ gi.

Then:

(A
R
x1x2...xk+1:e)g1g2...gk+l

≡ (A
R
x1: (A

R
x2...xk+1:e)) g1g2...gk+l

→ sub [g1,x1;(A
R
x2...xk+1:e)] g2...gk+l ,

by the case n = 1,

 ≡ sub [g1,z;sub [z,x1;(A
R
x2...xk+1:e)]] g2...gk+l

 ≡ sub [g1,z;(A
R
x2...xk+1:sub [z,x1;e])] g2...gk+l ,

 by Lemma 2-6,

29

≡ sub [g1,z;(A
R
x2...xk+1:sub [z,x1;e])]

sub [g1,z;g2]...sub [g1,z;gk+1]

by Definition 2-1 (1), since z oc/ g2,...,gk+1,

≡ sub [g1,z;((A
R
x2...xk+1: sub [z,x1;e]) g2,...,gk+1)]

→ sub [g1,z; sub [g2,x2;...;gk+1,xk+1; sub [z,x1;e]]] ,

 by the induction hypothesis and Lemma 2-2,

≡ sub [g1,x1;g2,x2;...;gk+1,xk+1;e] ,

by Definition 2-1 (2) .

Proofs of other parts are quite simple and are omitted.

 It has already been mentioned that xi oc/ A
R
x1...xn : e

for all 1 ≤ i ≤ n. To verify that R-abstracts are indeed

abstracts (Definition 2-3), it suffices to replace gi by xi,

1 ≤ i ≤ n, in Part (1) of Theorem 2-7. Thus, now we have an

algorithm for the SK representation of functions that are

defined by functional equations.

A comparison of Theorems 2-4 and 2-7 shows that

R-abstracts possess simpler properties than the abstracts in

general. One exception is the property in Part (5) of Theorem

2-7, where we do not get any improvement by using R-abstracts.

The relation ↔n in the conclusion of that part cannot be

strengthened to ↔ , as the following counterexample will

show: Kx(Sx) ↔ x, A
R
x:Kx(Sx) ≡ SKS, A

R
x:x ≡ SKK,

and SKS ↔1 SKK, but not SKS ↔ SKK (cf. discussion after

Definition 1-12).

30

In spite of their simpler properties as compared to

abstracts in general, R-abstracts rapidly increase in length

and become tedious to compute as the number of indeterminates

for abstraction increases. In Section 2.4, we will describe an

alternative, more practical algorithm for obtaining abstracts

that have almost the same reduction properties as R-abstracts.

31

2.3 The Lambda-Calculus

The previous section has introduced the notions of

indeterminates, ob forms, and abstracts for the purpose of

representing functions in SK. It so turns out that the

functions encountered in the representation of programs are

defined solely in terms of formal variables; the resulting SK

representations are, therefore, just obs, rather than ob forms

containing indeterminates. Thus, eventually, the use of

indeterminates and the generalization of obs to ob forms are

both dispensable; they are employed as a matter of notational

convenience only.

An alternative notion is that of lambda-expressions, which

closely resemble abstracts in their properties, but in which

the use of variables (indeterminates) is not as incidental.

Lambda-expressions are the objects of the lambda-calculus LC ,

which may be regarded either as an augmentation to SK or an

independent formal system that is similar to SK in several

respects.

We present below a brief description of lambda-

expressions for the sake of completeness and comparison with

abstracts. For details, consult [8,9,33].

The symbols in the alphabet of LC are “(”, “)”, “λ” , “:”,

and a denumerable collection of variables. A lambda-expression

(LE) is either a variable, or a word of the form (ef) or

(λx:e), where e and f are LE’s and x is a variable.

The LE (ef) is the application of e to f, and the LE

32

(λx:e) is the abstraction of e with respect to x.

To abbreviate LE’s, we may omit parentheses under the

convention that applications associate to the left and

abstractions to the right, with the former taking precedence

over the latter. For instance, the LE

(λx: (λy: ((xy) (λz: (((xz) (yz)) u)))))

may be abbreviated to

λx: λy: xy(λz: xz(yz)u) .

As an additional convention, the above may be further

abbreviated to

λxy: xy(λz: xz(yz)u)

In the LE (λx:e), the leftmost occurrence of x is a

binding occurrence, and e is the range of that occurrence. An

occurrence of a variable in an LE is bound if it is either

binding or in the range of any binding occurrence of the same

variable; otherwise, the occurrence is free. If e,f1,...,fn

are LE’s and x1,...,xn variables, then

sub [f1,x1;...;fn,xn;e]

denotes the result of simultaneously substituting fi for all

free occurrences of xi (1 ≤ i ≤ n) in e.

The basic LC rules for transformation, called

contractions, are these:

33

(a) λx:e →α λy:sub [y,x;e] ,

provided that y has no free occurrences in e, and no free

occurrence of x in e becomes a bound occurrence of y by

the substitution.

(b) (λx:e)f →β sub [f,x;e] ,

provided that no variable with free occurrences in f has

bound occurrences in e.

(c) λx:ex →η e, provided that x has no free occurrences in e.

 Analogously to the development in the case of SK, we

define: immediate reduction (→im) of LE’s as the application

of an α-, β-, or η-contraction on their parts;
2
 reduction (→)

as a sequence of immediate reductions; expansion (or,

respectively, α-, β-, η-, immediate expansion) as the converse

of reduction (or, respectively, α-, β-, η-contraction,

immediate reduction); and interconvertibility (↔) as a

possibly empty sequence of immediate reductions and expansions.

(The use of the same symbols → , →im and ↔ to represent the

different relations of SK and LC should not cause any

confusion.) The Church-Rosser theorem holds for LC as well [9,

Ch. 4]: If e ↔ f, then there exists an LE g, such that e → g

and f → g. But note the differences from SK:

2 The LE e is an immediate part of the LE’s (e f), (f e),

and (λx:e), where f is an LE and x is a variable.
A part of an LE is either the LE itself or a part of an
immediate part of the LE.

34

An LE is irreducible if no β- or η-contraction is applicable

to it even after any applications of α-contraction. Given an

LE e, if there exists an irreducible LE f such that e ↔ f,

then f is a normal form of e. The normal forms of LE’s are

unique only up to the applications of α-contraction.

The following properties of LE’s can be derived easily

from the above definitions.

(3-1) Theorem.

(1) If none of y1,...,yn has a free occurrence in e and

no free occurrence of xi, 1 ≤ i ≤ n, in e becomes a bound

occurrence of the corresponding yi in e by the substitution

below, then λx1...xn:e → λy1...yn:sub [y1,x1;...;yn,xn;e].

(2) If no variable with a free occurrence in any of

g1,...,gn has a bound occurrence in e, then

 (λx1...xn:e)g1...gn → sub [g1,x1;...;gn,xn;e].

(3) If none of x1,...,xn has a free occurrence in e, then

λx1...xn:ex1...xn → e.

(4a) If e → e’, then λx1...xn:e → λx1...xn:e’.

(4b) If e ↔ e’, then λx1...xn:e ↔ λx1...xn:e’.

The similarity between LC and SK (augmented with ob forms)

becomes obvious when we set up a correspondence between

variables and indeterminates and then interpret

(1) Ob forms by LE’s, by replacing S and K with λxyz:xz(yz)

and λxy:x, respectively;

(2) LE’s by ob forms, by replacing λ with A
R
.

35

With this interpretation, it is easy to see that whenever two

ob forms are mutually related by the SK reduction, their

corresponding LE’s are related by the LC reduction. The

converse, however, is not true. Here is a counterexample. Let

f ≡ λx: (λxy:x)x((λxyz: xz(yz))x)

→ λx: sub [x,x; (λxyz:xz(yz))x,y; x]

≡ λx:x ≡ g , say.

Let fC and gC denote the SK interpretations of the LE’s f

and g, respectively; that is,

 fC ≡ A
R
x: (A

R
xy:x)x ((A

R
xyz: xz(yz))x) ,

 gC ≡ A
R
x:x ≡ SKK .

It can be verified easily that fC ≡ SKS. Thus, in spite of the

relation f → g , it is not the case that fC → gC .

The above example also provides the explanation of this

dissimilarity of behavior between LC and SK. During the

process of reduction in LC, contractions can be applied to any

part of an LE, including the one to be abstracted (i.e., to the

right of the colon) in an abstraction. In SK an R-abstract is

an abbreviation for an ob form, and there are no provisions for

applying contractions on the part to be abstracted before the

whole abstract is computed. (Compare Parts (4) of Theorems 2-7

and 3-1.) Thus, while all SK reductions can be carried out (in

36

terms of interpretations) in LC, additional reductions are

possible in LC that have no SK counterparts. By supplementing

SK with some special rules, its reductions may be made to

correspond exactly with those in LC [9, p. 218]. The modified

reductions are termed strong; in contrast, SK reductions are

weak. But in strengthening the reductions, one loses the

extreme simplicity of the SK reduction process as presently

based on S- and K-contractions alone.

Although weaker, the SK reductions completely suffice for

the modelling of programming languages, and in the sequel, we

describe our model in terms of SK only. But, since all of the

reductions that we use also permit LC interpretations, the

model may just as well be regarded as being in LC; the only

needed modification is to replace the symbol A (the future

alternative to A
R
) by A, and to consider S and K as

abbreviations for the LE’s λxyz:xz(yz) and λxy:x,

respectively. A purely LC formulation of our model is given in

[1].

We also remark that LC supports extensionality -- the

property that if fa ↔ ga for all a, then f ↔ g -- while SK

does not. As a result, two representations of the same

intuitive function of n arguments are mutually interconvertible

in LC but, in general, only n-interconvertible in SK. This,

however, is no hindrance at all: It is the mechanical process

37

of functional evaluation that we keep simple by adhering to

weak reductions. But in making formal arguments about

functions, such as proving equivalence of functions and in

choosing function representations, we may freely employ n-

interconvertibility, which is as easy to use in these cases as

interconvertibility.

38

2.4 Additional Obs

In this section, we define a number of obs and ob families

that will be employed in the representation of programs. We

begin by introducing the most important of these:

(4-1) Definition.

 I ≡ SKK , B ≡ S(KS)K ,

 C ≡ S(S(KS)(S(KK)S))(KK) ,

 W ≡ SS(SK) , Z ≡ KI ,

 T ≡ CI , D ≡ WI ,

 β ≡ B(BS)B, Y ≡ B(SWW)B , Ω ≡ YK .

Clearly, I, B, C, and W are normal obs. Though it may not

be so obvious from their definitions, the obs Z, T, D, β, and Y

can be easily seen to be normal also. However, it will follow

from the property of Y given below that Ω does not possess a

normal form.

We shall use the term “rule” to designate frequently used

reduction properties. We list a set of rules (including S- and

K-contraction for completeness) that can be easily derived from

the above definitions.

 (4-2) Rule. For all obs a, b, c, d:

 (1) Sabc → ac(bc) ,

 (2) Kab → a ,

 (3) Ia → a ,

39

 (4) Babc → a(bc) ,

 (5) Cabc → acb ,

 (6) Wab → abb ,

(7) Zab → b ,

(8) Tab → ba ,

(9) Da → aa ,

(10) βabcd → a(bd)(cd),

(11) Ya → a(Ya) ,

(12) Ωa → Ω .

We may wish to incorporate some rules directly in an ob

reducing mechanism in order to avoid intermediate reduction

steps. This places the selected rules at par with

contractions. Equivalently, we may wish to extend the calculus

by admitting the obs with such rules as new primitive obs (in

addition to S and K), and the rules themselves as contractions.

In general, we have the choice of many rules for the same ob.

As an example, for the ob B we have:

 (a) B → S(KS)K

 (b) Ba → S(Ka)

 (c) Bab → S(Ka)b

 (d) Babc → a(bc)

 (e) Babcd → a(bc)d

For the sake of determinateness in reduction, however, we

should allow only one rule for each primitive ob. (Note that

if B is regarded as a primitive ob and (d) as the

40

“B-contraction,” then, by Definition 1-4, the ob Bab has to be

considered irreducible whenever a and b are irreducible.)

Although SK is formulated in terms of S and K alone, we shall

state unique rules for the obs that are important enough to be

candidates for use as primitives in an extended calculus. Now,

whenever any extensions to SK are stipulated, the following

question naturally arises: Do the Church-Rosser Theorem and

related properties remain valid in the extended calculus?

Fortunately, this theorem holds in very general situations

involving replacement rules (Rosen [32]). It follows from

Rosen’s work that the theorem is supported, for example, by the

calculus containing S, K, and the obs of Definition 3-1 as

primitives and Rules 3-2 as contractions. Furthermore, the

standard-order reduction algorithm continues to be valid in the

extended calculus.

We shall next describe the representation of natural

numbers and number-theoretic functions. Following Church [8,

Chap. 3], we represent a natural number n by an ob n with this

desired property:

(4-3) nxy → x(x(... (x y) ...)) .

 ↑
 n occurrences of x

The ob n is defined inductively in terms of the obs suc and 0,

representing the successor function and zero, respectively, as

follows:

41

 (4-4) Definition.

 suc ≡ SB ,

 0 ≡ Z ,

 n+1 ≡ suc n .

That is, we have

 0 ≡ Z , 1 ≡ SBZ , 2 ≡ SB(SBZ) ,

Using the above definitions, we immediately obtain:

(4-5) Rule.

 (1) 0xy → y ,

 (2) n+l xy → x(nxy) ,

from which the property (4-3) follows by induction.

 At this point, we introduce some notation due to

Curry [9]: We write a°b for Bab and a(n) for nBa. Consequently,

we have:

(4-6) Rule.

 (1) (a°b)c → a(bc),

 (2) a(n)bcl...cn → a(bc1...cn).

In particular:

 (3) K(n)ab1...bnc → ab1...bn ,

 (4) B(n)ab1...bncd → ab1...bn (cd).

In expressions involving ° we shall regard ° as being of lower

precedence than application and of higher precedence

42

than another ° at the right. Thus a°bc will stand

for a°(bc), not (a°b)c, and a°b°c for (a°b)°c, not a°(b°c).

Note, however, that a°b°c ↔1 a°(b°c).

Anticipating the forthcoming discussion of tuples, we

next introduce the representation of ordered pairs and triples.

(4-7) Definition.

 <a,b> ≡ C(Ta)b ,

 <a,b,c> ≡ C<a,b>c .

The definition yields the following reduction properties.

(4-8) Rule.

 (1) <a,b>c → cab ,

 (2) <a,b>K → a and <a,b>Z → b ,

 (3) <a,b,c>d → dabc ,

 (4) <a,b,c>(K°K) → a, <a,b,c>(KK) → b,

 <a,b,c>(KZ) → c.

We can now describe the representation of the predecessor

function on natural numbers.

(4-9) Definition. pred ≡ <S(BCT)suc°T0, <0,0>,K>.

(4-10) Rule.
 0, if n = 0,

pred n →
 n-1, if n > 0.

To prove this rule, let h ≡ S(BCT) suc°T0. Then it can be

easily shown that

h <m, n> → <n, n+l> .

43

Hence,
 pred n ≡ <h, <0,0>, K> n

 → n h<0,0>K

→ h(h(h(... (h <0,0>) ...)))K

 ↑ n occurrences of h

 <0,0>K → 0, if n = 0 ,
 →
 <n-1,n>K → n-1, if n > 0 .

It will be found convenient to define the ob families by

which the properties of K, I, and B are generalized in the

following manner.

(4-1l) Rule.

 (1) Knab1...bn → a, n ≥ 1 .

 (2) I
m
nal...an → am , n ≥ m ≥ l ,

(3) B
m
nab1...bmc1...cn → a(blcl...cn)...(bmcl...cn),

m,n ≥ 1 .

Thus, we will have

K ↔2 K1 , I ↔1 I
1
1 , B ↔3 B

1
1 , S ↔3 B

1
2I,

 a(n) ↔n+1 B
1
na .

The above rules can be realized by making the following

(4-12) Definition.

 (1) Kn ≡ n K , n ≥ 1 ,

 (2) I

!

n

m

 ≡ m-1 K (n-m K), n ≥ m ≥ l ,

 (3) B

!

n

m

 ≡ n(m-l(C(3 B) β ° TI)B) , m,n ≥ 1 .

44

It is easy to verify parts (1) and (2) of Rule 4-l1 from the

above definitions. We shall prove part (3).

Let h ≡ C(3 B) β ° TI. We first show by induction on m that

(*) m-1 hBab1...bmc1 → a(b1c1)...(bmc1), (m ≥ 1).

This result is immediate for m = 1. Assume it is true for m =

k; then

k h Bab1...bm+1c1

→ h(k-l h B) ab1...bm+1c1

→ (C(3 B) β ° TI) (k-1 h B) ab1...bm+1c1

→ C(3 B) β (TI (k-1 h B)) ab1...bm+1c1

 → 3 B(TI(k-1 h B)) β ab1...bm+1c1

 → 3 B(k-1 h BI) β ab1...bm+1c1

 → k-1 h B I(βa b1b2) b3...bm+1c1 , by 4-6 (2) ,

→ I(βab1b2c1)(b3c1)...(bm+1c1), by induction hypothesis,

→ a(b1c1)(b2c1) ... (bm+1c1) .

So (*) has been established. To prove 4-1l (3) now, we use

induction on n. For m ≥ 1, we have

B

!

1

m

 ab1...bmc1 ≡ 1(m-l hB) ab1...bmc1

→ m-1 hB(0(m-lhB))a) b1...bmc1

→ m-l hB ab1...bmc1

 → a(b1c1)(b2c1) ... (bmc1) , by (*).

45

Hence assuming 4-11 (3) true for m ≥ 1 and n = k, we obtain

B

!

k+1

m

ab1...bmc1...ck+1 ≡ k+1(m-l h B) ab1...bmc1...ck+1

 → m-l hB (k(m-l hB)a) b1...bmc1...ck+1

 → k(m-l hB a(b1c1)...(bmc1)c2...ck+1 , by (*),

 ≡ B

!

k

m

a(b1c1)...(bmc1)c2...ck+1

 → a(b1c1c2...ck+1)... (bmc1c2...ck+1) ,

by induction hypothesis.

As shown by the next definition and the succeeding rues,

it is possible to generate the above ob families from single

obs. We can thus avoid postulating infinitely many primitives

in an extended calculus.

(4-13) Definition.

 (1) K ≡ TK ,

 (2) I ≡ βB(CpredK)(CCK°Tpred) ,

 (3) B ≡ T°C(Cpred(C(3B) β°TI))B .

(4-14) Rule.

 (1) K n → Kn , n ≥ l ,

 (2) I m n → I

!

n

m

 , n ≥ m ≥ l ,

 (3) B m n → B

!

n

m

 , m,n ≥ l .

Proof. Omitted.

46

Before listing further obs, we state an algorithm to

obtain abstracts in terms of the obs Kn , I

!

n

m

, and B

!

n

m

. Unlike

the algorithm of Definition 2-5 in which abstraction is carried

out for one indeterminate at a time, the present algorithm

performs the abstraction with respect to all specified

indeterminates in a single step, and amounts to simple

replacements of indeterminates with special obs.

(4-15) Definition.

(1) An initial component of an ob form is either the ob

form itself or the left immediate component of an initial

component of the form.

(2) A primal component of an ob form is either its

shortest initial component, or a right immediate component of

one of its initial components.

Example. The ob form e ≡ SK(x(KK)yz)(S(wz)(SSy))(xyz) has five

initial components, namely, S, SK, SK(x(KK)yz),

SK(x(KK)yz)(S(wz)(SSy)), and e itself; the primal components of

e are S, K, x(KK)yz, S(wz)(SSy), and xyz.

(4-16) Definition. Let e be an ob form and x1,...,xn (n ≥ 1),

be indeterminates. Then the *-abstract of e with respect to

x1,...,xn, denoted A*x1...xn:e, is the first of the following

ob forms, selected in the given order, according as the

condition is satisfied:

47

 (1) Kne , if xi oc/ e for all 1 ≤ i ≤ n,

 (2) I , if e ≡ x1...xn,

 (3) I

!

n

i

 , if e ≡ xi for some 1 ≤ i ≤ n,

 (4) f , if e ≡ fx1...xn , and xi oc/ f for all 1≤i≤n,

 (5) B

!

n

m

 I I

!

n

m

 (A*x1...xn:f2)...(A*x1...xn:fm) ,

 if e ≡ f1f2...fm , f1,f2,...,fm are primal

components of e, and f1 ≡ xi for some 1 ≤ i ≤ n,

 (6) B

!

n

m-1

fl(A*x1...xn:f2)...(A*x1...xn:fm) ,

if e ≡ f1f2...fm , f1 is the longest initial

component of e such that xi oc/ f1 for all 1 ≤ i ≤ n,

and f2,...,fm are primal components of e.

Note that for cases (5) and (6), we decompose the ob form

e into an initial component and a number of primal components,

with the initial component chosen to be either a single

indeterminate among x1,...,xn, if possible, or else the longest

possible ob form not containing any of x1,...,xn.

Example. To find A*xyz:e, where e is as defined in the

previous example. Diagrammed below is the decomposition of e

and its components according to the conditions prescribed in

(5) and (6) above.

48

SK (x (KK) y z) (S (w z) (SS y)) (x y z)
 _ _ __ _

 1 2 1 2
 _ ___ _ _ _ _____ ______
 1 2 3 4 1 2 3
 __ _______________ __________________ ________
 1 2 3 4

Hence, A*xyz:e

≡ B

!

3

3
 (SK)(B

!

3

4 II

!

3

1
 (K3(KK))I

!

3

2
 I

!

3

3
)(B

2
3S(B

!

3

1 w I

!

3

3
)(B

!

3

1
 (SS)I

!

3

2
))I .

By using Rules 4-10, it can be easily verified that,

except for parts (3b) and (4), Theorem 2-7 remains valid

when A
R
 is replaced by A*. It is possible to restore (3b) by

a slight modification in the above definition of abstracts.

Let A**x1...xn:e be specified similarly to A*x1...xn:e, except

for modifying the clause (4) in Definition 4-16 to

(4) A**xl...xm-l:f, if for some 1 ≤ m < n,

e ≡ fxm...xn , and for m ≤ i ≤ n, xi oc/ f .

(We consider A** xl...xm-l:f to be simply f when m = 1.) Let e

be the same ob form as before. Then, we have

A**xyz:e ≡ B

!

3

3
 (SK)(B

!

1

2

II

!

1

1

 (K1(KK)))(B

!

3

2
S(K2w)(B

!

3

1
 (SS)I

!

3

2
))I .

It can be verified that with A** used instead of A

R
 , all parts

except (4) of Theorem 2-7 remain valid.

49

In the sequel, we will drop the superscript on A

altogether, thereby leaving the abstraction algorithm

unspecified.

A function on natural numbers is partial

recursive if it can be defined using the following functions

and function-forming schemes [14]:

 1. Successor Function S(x) = x+1 .

 2. Constant Functions C

!

q

n
 (x1,...,xn) = q, q a natural

 number.

 3. Identity Functions U

!

i

n

 (x1,...,xn) = xi, 1 ≤ i ≤ n.

 4. Composition Scheme: Given functions g,h1,...,hm,

 to obtain f such that

 f(x1,...,xn) = g (h1(x1,...,xn),...,hm(x1,...,xn)).

5. Primitive Recursion Scheme. Given functions g and h,

 to obtain f such that

 f(x1,...,xm,0) = g(x1,...,xm) ,

f(x1,...,xm,y+l) = h(x1,...,xm,y,f(x1,...,xm,y)).

6. Minimalization Scheme. Given a function g, to obtain

 f such that

f(x1,...,xm) = (µy)[g(x1,...,xm,y) = 0]

= the least integer y, if one exists, such that

g(x1,...,xm,y) = 0 .

Now the obs suc, Knq and I

!

n

i

 clearly represent the first

three functions of the above list. Further, if the obs

50

g and hi are the representations of the functions g and hi,

respectively, then f ≡ B

!

n

m

gh1...hm represents the f of Scheme 4.

Thus, to complete the combinatory representation of partial

recursive functions, it only remains to provide the obs

primrecm and mnmlzm such that the definitions f ≡ primrecm h g

and f ≡ mnmlzm g may correspond to Schemes 5 and 6. For this

purpose, we give the following definitions and rules, adapted

from Petznick [29] with minor modifications.

(4-17) Definition.

 (1) primrec0 ≡ Axy:<Az:<suc(zK),x(zK)(xZ)>,<0,y>,Z> ,

 (2) primrecm ≡ B

!

4

2 primmrec0 , m ≥ 1 ,

 (3) mnmlz0 ≡ D(Axyz:zy(K(xx(suc y)z))y)0 ,

 (4) mnmlzm ≡ mnmlz0(m) (≡ m B mnmlz0) , m ≥ 1 .

(4-18) Rules.

(1) primrecm abc1...cmn

bc1...cm , if n = 0,
 →

ac1...cmn-l(primrecmabc1...cmn-l), if n > 0.

(2) mnmlzmab1...bm → n ,

provided that ab1...bm → 0, and, for all 0 ≤ p < n,

there exists some q > 0 such that ab1...bmp → q .

51

We shall make use of certain special forms of recursion in

specifying some ob sequences. It is possible to give

individual, explicit definitions for the obs of these

sequences. We indicate in the table below how all members of

such ob sequences can be generated from a single ob, thus

avoiding the need to postulate infinitely many primitives in an

extended calculus containing such obs.

(4-19) Table.

 Specification of the Definition of the ob f

 ob sequence fi such that f i → fi
_____________________ _______________________

 (1) f0 ≡ g ,

 fn+l ≡ h fn . f ≡ <h,g> .

 (2) f1 ≡ g ,

 fn+l ≡ h fn . f ≡ <h,g>°e pred .

 (3) f0 ≡ g ,

 fn+l ≡ h n . f ≡ C(SI(K°(h°pred)))g .

 (4) f0 ≡ g ,

 fn+l ≡ h n fn . f ≡ primrec0 h g .

 (5) f0 ≡ g , f ≡ primrec0 <B,h>g .

 fn+la1...an+1 ≡ h(fna1...an)an+1 .

 (6) f0 ≡ g, f ≡ primrec0(C°(CBh°TB))g.

 fn+la1...an+1 ≡ ha1(fna2...an+1) .

52

For each entry in the Table 4-19, the relation fn → fn

can be verified from the definition of f. For example, we

prove the case of entry (3). Let p ≡ K°(h°pred), so that

f ≡ C(SIp)g. Then:

 f0 ≡ C(SIp)g0 → SIp0g → I0(p0)g → 0(p0)g → g ≡ f0.

 fn+1 ≡ C(SIp)gn+1 → SIpn+1g → In+1(pn+1)g

→ n+l(pn+1)g → pn+l(n(pn+1)g)

≡ (K°(h°pred))n+l(n(pn+l)g)

→ K(h(pred n+l))(n(pn+lg)

→ hn ≡ fn+l .

To facilitate the representation of a succession of

function applications, we introduce the ob family nestn:

(4-20) Definition.

 nest0 ≡ I ,

nestn+1a1...an+l ≡ Ba1(nestn a2...an+l) ,

 [a1,...,an] ≡ nestn a1...an .

(4-21) Rule. [a1,a2,...,an]b → a1(a2(...(an b)...)) .

Note the following properties of nests:

[a,...,a] ↔1 n a ,

 ↑ n occurrences

[a1,...,am,b1,...,bn] ↔1 [a1,...,am]° [b1,...,bn] .

53

The purpose of the next set of obs is to represent

functional operators for permuting and duplicating the

arguments of functions. These obs thus generalize the effect

of C and W.

(4-22) Definition.

 (1) rotl1 ≡ I ,

 rotln+1 ≡ (BC°B) rotln , n ≥ 1.

 (2) rotr1 ≡ I ,

 rotrn+1 ≡ C(B°B)C rotrn , n ≥ 1.

 (3) swap

!

n

m

 ≡ [rotrm , rotrn , rotlm+1 , rotln] , l≤m≤n .

 (4) perm
n
i1,...,im ≡ B

!

n

m

 I I
i1

n ... I
im

n ,

 l ≤ ij ≤ n for all 1 ≤ j ≤ m.

 (5) dup0 ≡ I ,

 dupn+1 ≡ dupn°(W(n+1)rotrn+1)(n+1) , n ≥ 1.

(4-23) Rule.

 (1) rotln a b1b2...bn → a b2...bn b1 , n ≥ 1 .

 (2) rotrn a b1...bn-1bn → a bnb1...bn-1 , n ≥ 1 .

 (3) swap

!

n

m a b1...bn → a b1...bm-1bnbm+1...bn-1bm ,

 l ≤ m ≤ n .

 (4) perm
n
i1,...,ima1...an → ai1...aim ,

 l ≤ ij <n for all l ≤ j ≤ m .

 (5) dupn a b1...bn → a b1... bnb1... bn .

54

Proof. (1), (2), and (5) by induction on n,

(3) by (1) and (2), and (4) by Rule 4-10 (3).

Our representation of ordered tuples is adopted from

Church [8]. The essential idea is to regard the tuple

<a1,...,an> as the abstract Ax: xa1... an , that is, to define

tuples so as to obtain the rule

 <a1,...,an>b → ba1...an .

(Two special cases of ordered tuples, namely, pairs and

triples, and their associated rules were introduced earlier

(4-7 and 4-8). In addition to the tuple-forming operators, we

will require a number of obs to represent various manipulations

on tuples, such as inserting, retrieving, or changing elements.

Here are the necessary definitions and rules.

(4-24) Definition.

 (1) tup0 ≡ I ,

 tupn+1 al...an+l ≡ C(tupn a1...an)an+1 ,

 <a1,...,an> ≡ tupn a1...an , n ≥ 0 .

 (2) insert ≡ C .

 (3) elem

!

n

m

 ≡ I

!

n

m

 , l ≤ m ≤ n .

 (4) replace

!

n

m

 ≡ [rotlm+1,rotrm,K]tupn, l ≤ m ≤ n .

 (5) fput

!

n

m

 ≡ B

!

n

2

I(rotrn+1 replace

!

n

m

) , l ≤ m ≤ n .

(6) funtup

!

n

m

 = B

!

n

m

 tupn , l ≤ m ≤ n .

55

(4-25) Rule.

(1) <a1,...,an>b → ba1...an .

(2) insert <a1,...,an>b → <a1,...,an,b> .

 (3) elem

!

n

m

 a1...an → am , l ≤ m ≤ n .

 (4) replace

!

n

m

 b a1...an → <a1,...,am-1,b,am+1,...,an> ,

 l ≤ m ≤ n .

 <a1,...,an> (replace

!

n

m

 b)

 → <a1,...,am-1,b,am+1,...,an> , l ≤ m ≤ n .

 (5) fput

!

n

m

 fa1...an → <a1,...,am-1,fa1...an,am+1,...,an> ,

 l ≤ m ≤ n .

 <a1,...,an> (fput

!

n

m

 f)

 → <a1,...,am-1,fa1...an,am+1,...,an> ,

 l ≤ m ≤ n .

(6) funtup

!

n

m

 f1...fm a1...an → < f1a1...an,...,fma1...an>.

 Proof. Omitted

We claim that there exist obs nest, rotl, rotr, tup, elem,

and replace possessing the following reduction properties:

56

nest n → nestn , n ≥ 0 ,

 rotl n → rotln , n ≥ 1 ,

rotr n → rotrn , n ≥ 1 ,

tup n → tupn , n ≥ 0 ,

e1em m n → elem

!

n

m

 , l ≤ m ≤ n ,

 replace m n → replace

!

n

m

 , l ≤ m ≤ n .

The definitions of nest, rotl, rotr, and tup follow directly

from Table 4-19 and Definitions 4-20,22,24; in addition, we can

take
 elem ≡ I ,

replace ≡ Axy: [rotl (suc x), rotr x, K] (tup y) .

It should be noted that, indeed, each ob sequence that we have

introduced so far, or will introduce in the sequel, can be

generated from a finite number of obs.

57

CHAPTER 3

BASIC PROGRAMMING FEATURES

In this chapter, we undertake the representation of the

more elementary features of high-level programming

languages, postponing the discussion of jumps and procedures

to later chapters. We use the ALGOL 60 [27] terminology and

notation, whenever possible, to express programming language

features.

3.1 An Overview

To construct our model, we start with the representations

of the atomic constituents of program, such as constants and

variables. We then develop the rules for obtaining the

representations of larger and larger programming constructs by

combining the representations of their syntactic units in

certain ways, eventually deriving the rules for representing

whole programs. Throughout this development, we are guided by

intuitive interpretations of programming constructs as

functions.

There are several different ways in which a program may be

regarded as a function, depending upon what we consider to be

the arguments of the program and what we regard as the finally

computed results. These different functional

58

interpretations of programs may result in different choices

of the representations of individual programming constructs.

We will take the view that it is the external input-output

behavior that most appropriately characterizes a program, and

choose our representations with the goal of making this

behavior as explicit as possible. Consider, for example, the

program:

begin integer a,b,c;

read a; read c; b := a+c; write b; b:=b-2xc;

write b

end

(We use read and write as standard statements for performing

single-item input-output operations). As far as the external

input-output is concerned, the above program behaves like a

two-argument function which produces as value two quantities,

the sum and difference of its arguments. Thus, this program

may be intuitively interpreted as the function f given by

 f(x,y) = <x-y,x+y> . (i)

 The function f is representable in SK by an abstract

 f ≡ Axy:<x-y,x+y> (ii)

having the reduction property

 fxy → <x-y,x+y> . (iii)

59

(Although the expressions x-y and x+y are not exactly ob

forms, they can be easily translated to be such -- as we will

soon see.) Accordingly, we would like to set up the model in

such a manner that the representation of the above program may

turn out to be an ob f, satisfying (iii). So constructed, the

model would, in essence, enable us to abstract out of a program

code the function from the input space to the output space that

the program computes. For, f represents precisely this input-

output function.

More generally, let P be a program, i1,...,ip, its inputs,

and o1,...,oq its outputs. Then we would like that the

representations provided by our model satisfy the reduction

relation

(1-1) {P}{i1 }...{ip } → <{o1 }...{oq }> ,

in which the representations are denoted (anticipating a

forthcoming notation) by enclosing within braces the symbols

for the corresponding represented entities.

The subsequent sections will show how the representations

of various programming constructs may be chosen to fulfill the

above requirement.

60

3.2 Variables

For each program that we wish to represent in our model,

we shall need a fixed correspondence between the variables

declared in the program and the indeterminates of (the

augmented) SK. Now in block-structured programming languages,

it is permissible to employ the same identifier to denote

different program variables as long as those variables have

different scopes. In choosing the correspondence between

program variables and indeterminates, it will not be necessary

to distinguish between any two identically denoted variables

that are declared in disjoint blocks. But it will be necessary

to distinguish all the variables that are declared in a set of

nesting blocks. (To distinguish two such variables denoted by

the same identifier, it suffices, for example, to superscript

the identifier by the respective block level numbers -- zero

for the outermost (program) block, and n+l for the blocks

immediately enclosed by a block at level n.) The correspondence

between program variables and indeterminates will be set up by

assigning distinct indeterminates to distinct variables (in the

above sense) in some order.1 Since we

1 We shall assign single indeterminates to both simple

variables and array variables, however, the treatment of

arrays is deferred to a later section, and until that

discussion all variables are meant to be simple.

61

have not specified the alphabet for indeterminates, we shall,

for convenience in expressing our representations, denote the

indeterminates by the same symbols by which the corresponding

program variables are denoted.

The representation of a programming construct in a given

program depends upon, among other things, the variable

declarations in whose scope the construct appears. To account

for this, we need the notion of environment defined as follows:

The environment of a construct in a program is a list of all

the program variables that have been declared in the blocks

enclosing the point at which the construct occurs. In this

list, the variables are to be arranged in their order of

declaration within individual blocks, with the blocks taken in

the innermost to the outermost order.2

From what has been stated earlier about distinguishing

program variables, it follows that the variables constituting

an environment are all distinct.

Example. Consider the following schematic program, in which it

is assumed that the omitted statements indicated by ellipses do

not contain declarations.

2 When the program contains procedures, the environments may

also include formal variables and a number of other
variables which are not explicitly declared in the program;
these additional variables will be introduced in Chapter 5.

62

A:begin integer x,y;

B:...;

begin integer y,z;

 C:...;

end;

begin integer x,w,z;

D:...,

end

end

From our view-point, this program makes use of six

distinct variables, namely, x
0
,y

0
,y

1
,z

1
,x

1
, and w

1
, where the

superscripts indicate block level numbers. For simplicity, let

us omit the superscripts from x
0
,y

0
,z

1
, and w

1
. Then the

environments of the statements labelled A (i.e., the whole

program), B, C, and D are, respectively, the null list

(), (x,y), (y
1
,z,x,y), and (x

1
,w,z,x,y).

In general, the SK representation of a construct depends

upon the construct’s own environment as well as the

environments of its constituents. We denote the SK

representation of a construct X appearing in the environment E

by {X }E. We drop the subscript from the above notation if the

representation of X is the same in all environments (in which X

63

can legally occur).

A formula specifying the representation of a construct in

terms of its environment and the representations and

environments of its constituents will be referred to as a

representation rule. In such a formula, the environments of

the constituents will generally be omitted if they are the same

as the environment of the construct under representation.

64

3.3 Constants, Operations, Relations

The general criterion for choosing the SK representations

of the values of the various types employed in programming

languages and associated operations and relations may be stated

thus: Let * denote a unary operation and ** a binary operation

or relation. Then for all operands a and b of the proper types

for which * and ** are defined, it should be the case that

{*}{a} → {value of (*a)} ,

{**}{a}{b} → {value of (a**b) .

In this way, it becomes possible to interpret the computation

of values as simply the SK reduction process. Of course, the

above criterion may be met by several different

representations, in which case the choice is dictated by the

simplicity of the resulting obs.

We begin with the Boolean values. The values true and

false are represented by the obs K and Z, (Definition 2.4-1),

respectively. The motivation behind this choice is that it

leads to a very simple representation of conditional

expressions; namely,

 {if b then c else d) ≡ {b}{c}{d} (i)

Quite short representations of logical operators can then be

provided by using McCarthy’s well-known technique of expressing

these operators in terms of conditionals [23].

65

In particular, we obtain:

(2-1) Definitions and Rules.

 (1) true ≡ K , true a b → a .

 (2) false ≡ Z , false a b → b .

 (3) ¬ ≡ <false,true> , ¬ a → a false true .

 (4) ∧ ≡ CC false , ∧ a b → a b false .

 (5) ∨ ≡ T true , ∨ a b → a true b .

 (6) imp ≡ CC true , imp a b → a b true .

 (7) eqv ≡ CS ¬ , eqv a b → a b (¬ b) .

 It is an easy matter to verify that the above presented

obs correctly represent the corresponding logical operators.

For example, it is seen that

 imp true true → true true true → true

 imp true false → true false true → false

 imp false true → false true true → true

 imp false false → false false true → true

 So that a conditional expression may be recognizable as

such even when represented in SK, we make the following trivial

definition and restate the representation rule (1).

 (2-2) Definition. if ≡ I .

(2-3) Representation Rule.

 {if b then c else d } ≡ if {b}{c}{d} .

66

Let us now turn to the representation of arithmetic in

SK. We will only be concerned with integers and rational

numbers. (The type called “real” in the programming parlance

will be termed “rational” here.) The representation of natural

numbers has already been described (Definition 2.4-4).

Following the procedure common in analysis, one can consider

integers and rational numbers to be equivalence classes of

natural numbers and integers, respectively. For convenience in

carrying out reductions with their representations, it seems

preferable, however, to represent these numbers in terms of

uniquely selected members of the equivalence classes they stand

for. Thus, an integer p is traditionally defined to be the set

of all pairs <m,n> of natural numbers in and n, such that,

intuitively, p is a solution of the equation m = n+p; but we

prefer to define the SK representation of p to be the

representation of that particular pair in the set which has the

smallest m and n (at least one of these being necessarily

zero). Again, a rational number r is the set of all pairs

<p,q> of integers p and q such that r intuitively satisfies

p = q × r; but we prefer to represent r by the representation

of that pair for which q is positive, p and q are relatively

prime, and, furthermore, if p = 0, then q = 1.

67

Numbers of different types denoted by the same symbols in

a programming language are in reality different entities

possessing different ob representations. We denote them by

underlined numerals, unsubscripted in the case of natural

numbers, and with subscripts Z and Q added for integers and

rational numbers, respectively. Thus, the obs 3, 3Z , and 3Q

and represent the natural number 3, the integer 3 and the

rational number 3. As discussed above, we define them as

follows:

 3 ≡ suc (suc (suc 0)) , where suc ≡ SB, 0 ≡ Z ,

 3Z ≡ <3, 0> ,

 3Q ≡ <3Z,1Z> ≡ <<3,0>,<1,0>> .

Additional examples:

 0Z ≡ <0,0>, 0Q ≡ <0Z,1Z> ≡ <<0,0>,<1,0>> ,

 -3Z ≡ <0,3>, -3Q ≡ <-3Z,1Z> ≡ <<0,3>,<1,0>> ,

 -2.6Q ≡ <-13Z,5Z > ≡ <0Z,13Z> ≡ <<0,13>,<5,0>> .

 Having settled upon the representation of numbers

themselves, let us turn to the representation of operations and

relations defined on numbers. We denote the representations by

the corresponding algebraic symbols, again unsubscripted in the

case of natural numbers and subscripted with the letters Z and

Q in the case of integers and rational numbers, respectively.

Thus, +, +Z, and +Q represent natural number, integer, and

rational addition, respectively, and are to be so

68

defined that, for example,

+ 3 2 → 5 .

+Z 3Z -2Z → 1Z , i.e., +Z <3,0><0,2> → <1,0> .

+Q 5/6Q -4/9Q → 7/18Q .

Obs representing the successor and predecessor functions

on natural numbers were defined earlier (Definition 2.4-4,2.4-

9). Using the method of representing recursively defined

functions given in Section 2.4, the SK representations of other

operations and relations on natural numbers can be obtained

from their well-known recursive definitions [14]. For strong

combinatory calculi, this is done in Church [8]; for the weaker

SK reductions, some representations are given in Petznick [29).

Finally, to represent integer and rational operations, we can

make use of the definitions of these operations in terms of,

respectively, the natural number and integer operations on the

components of the pairs representing their operands. Consider

integer operations for example. First we will require an ob

normlZ to represent the “normalization” operation of converting

an arbitrary pair of natural numbers in the equivalence class

denoting an integer to the unique pair chosen for the CC

representation of that integer; e.g.,

 normlZ <l6,5> → <11,0> ,

Having represented the proper subtraction and minimum selection

69

operations on natural numbers by the obs -̇ and min,

respectively, we would need the rule

normlZ <m,n> → <-̇ m (min m n), -̇ n (min m n)> .

In view of Rule 2.4-8(2), an adequate definition for this

purpose is:

normlZ ≡ Ax:< -̇ (xK)(min(xK)(xZ)), -̇ (xZ)(min(xK)(xZ))> .

Now we can represent integer addition and subtraction (in terms

of natural number addition on the components of the integer

operands) by the obs defined to satisfy the reduction relations

 +Z <a,b> <c,d> → normlZ <+ a c , + b d> ,

 -̇ Z <a,b> <c,d> → normlZ <+ a d , + b c> .

As additional examples, let us consider the familiar

programming operations of type-conversion from integers to

rational numbers, and the “mixed addition” of rational and

integer operands giving a rational result. The obs float and

+QZQ representing these operations have to satisfy, for

example:

float 2Z → 2Q ,

+QZQ -3.14Q 2Z → -1.14Q .

70

The following definitions clearly suffice for these obs:

float ≡ Ax:<x,lZ> ,

+QZQ ≡ Axy:+Q x(float y) .

Not all operations, of course, are so easy to deal with.

Furthermore, the operations such as the exponentiation to

fractional powers, which lead to irrational numbers, can be

represented in our scheme only by defining them in terms of

functions that approximate the results to some desired

precision, using the techniques for representing functions that

will be described later. However, the actual details of

representing various arithmetic operations and relations are

not crucial to our model, for this model is not intended to be

used in studying the purely numerical aspects of programs. The

purpose of the discussion in this section is simply to indicate

that it is possible to represent arithmetic in SK, and to

sketch a way of carrying out this representation.

71

3.4 Expressions

We limit ourselves at present to the expressions that do

not contain function designators. (This restriction will be

lifted when procedures are discussed.) According to the

requirements imposed by programming languages, any variable

occurring in such an expression must also occur in the

environment of the expression. Let e be an expression and E

its environment. Then, in view of the SK representations

chosen for operations and constants, the representation {e}E

will be defined by induction on the (parse) structure of e to

be the following ob form:

1) If e consists of a constant represented by c, then

{e}E ≡ c.

2) If e consists of a program variable corresponding to

the indeterminate x, then {e}E ≡ x.

3) If e consists of a k-ary operation (or relation)

represented by o, with the subexpressions el,...,ek as

operands, then {e}E ≡ (o {e1}E ,..., {ek}E).

It follows that the SK representation of an expression may

be obtained simply by writing the expression in the prefix

notation, with all operator-operands combinations

parenthesized, and then replacing all operators and operands by

their representations. It further follows that the

72

representation of an expression is the same in all environments

in which it can legally appear. Thus, in accordance with a

convention stated in Section 3.2, we may omit the mention of

environment in denoting the representation of expressions.

Consider, for example, the following expression in which

x, y, z denote program variables:

 x + if y ≠ 0 then z+y else l5. (i)

In the prefix form, this expression may be written as:

 (+ x (if (≠ y 0) (+ z y) 15)). (ii)

In accordance with the conventions stated in Section 3.2, let

us use the symbols x, y, z for indeterminates as well as the

program variables. Now if the program variables have been

declared to be all of type integer, and the value of the above

expression is to be of type integer also, then the expression

may be represented by the ob form

 +Z x (if (≠Z y 0Z) (+Z z y) 15Z). (iii)

On the other hand, if the program variable x and the result are

of the type rational, and y and z of type integer, then the

expression may be represented by

 +Q x (float (if (≠Z y 0Z) (+Z z y) 15Z)). (iv)

where the ob float represents the type-conversion operation

73

mentioned in the previous section. But for closer resemblance

between the given expression and its representation, we find it

preferable to write, instead of (iv),

 +QZQ x (if (≠Z y 0Z) (+Z z y) 15Z) , (v)

with the ob +QZQ representing the “mixed” addition of a

rational number to an integer, producing a rational number as

value.

For conciseness of notation in stating the representation

of expressions, we shall henceforth assume that all type-

conversions are absorbed within mixed operations as above.

Furthermore, we shall omit all type indicating subscripts,

leaving the types to be inferred from the context. For

example, we shall abbreviate (v) to

 + x (if (≠ y 0) (+z y) 15) . (vi)

No serious ambiguity will arise out of the above convention,

because, except for using natural numbers in a few, explicitly

indicated, instances, we shall use the numbers and operations

of type integer only.

We shall often need the abstract of the representation of

an expression with respect to the indeterminates representing

the variables in the environment of the expression. The

procedure of Definition 2.4-16 is particularly easy to apply in

this case. Specifically, for the special case of

74

expression representations, we may state the following

(4-1) Abstraction Algorithm. Let e be the ob form representing

an expression which appears in the environment (v1,...,vn).

Then to obtain Av1... vn:e, rewrite e, replacing

(1) each ob o representing a k-ary operation by (B

!

n

k

 o)

 (2) each indeterminate vi, 1 ≤ i ≤ n, by I

!

n

i

, and

(3) each ob c representing a constant operand by (Knc).

Example. Let (x,y,z,w) be the environment of the

expression

if y = 218 ∧ x+3 < -z then z+(7+y) else

if x × y ≥ z then entier (x/z) else -12.

The above expression may be represented by the ob form

e ≡ if (∧ (= y 218) (< (+ x 3)(minus z))) (+ z (+ 7 y))

 (if (≥ (x × y) z) (entier(/ x z)) -12) ,

where minus and entier have obvious significance. Using the

above procedure, we obtain

Axyzw:e ≡ B

!

4

3
 if(B

!

4

2

 ∧ (B

!

4

2

 = I

!

4

2

 (K4 2l8))(B

!

4

2

 <(B

!

4

2

 + I

!

4

1

 (K43))

(B

!

4

1

 minus I

!

4

3
))) (B

!

4

2

 + I

!

4

3
 (B

!

4

2

 + (K4 7)I

!

4

2

))

(B

!

4

3
 if (B

!

4

2

 ≥ (B

!

4

2 × I

!

4

1

I

!

4

2

)I

!

4

3
) (B

!

4

1

 entier (B

!

4

2

/I

!

4

1

I

!

4

3
))

 (K4 -12)) .

75

It is only in the representation of expressions that we

are compelled to employ indeterminates. In representing larger

constructs, such as statements, which contain expressions as

syntactic units, the expression representations will always be

used as parts of abstracts of the above form, eliminating all

indeterminates.

76

3.5 Assignments

Before discussing any particular type of statement, we

will first indicate the general idea behind our SK

representations. Consider a given statement S of a program.

Let (v1,...,vn) be the environment of S, and denote by F the

section of the program following S and extending all the way to

the program end. (F will sometimes be referred to as the

program remainder of S.) The two parts of the program, one

consisting of F alone, and the other composed of S and F

together, may be interpreted as two functions φ and φ’,

respectively, of the arguments v1,...,vn. With this

interpretation in mind, the effect of the statement S is to

transform φ into φ’. As the representation of S, therefore, we

take precisely the function (to be accurate, the functional

operator) σ given by

 (σ(φ))(v1,...,vn) = φ’(v1,...,vn) (i)

which accomplishes the above transformation.

 Using the Schönfinkel interpretation of functions

(Section 2.2), the above relation may also be written as

 σ(φ,v1,...,vn) = φ’(v1,...,vn) . (ii)

Now suppose we can somehow express the right-hand-side of

(ii) in terms of the function φ, the variables v1,...,vn,

77

and possibly some constants. Then we may take (ii) to be the

functional equation defining σ, with v1,...,vn, and even

φ, as formal arguments. (Note that while the domains of the

arguments v1,...,vn are the values of the corresponding program

variables, the domain of φ consists of the program remainders

considered as functions.) Now by interpreting (ii) in

combinatory terms, and by abstracting the ob form representing

its right-hand-side with respect to the indeterminates

φ,v1,...,vn, we may obtain a definition of σ as an ob.

We remark that if the statement S is modelled as above by

the ob σ, then the execution of S is modelled by the reduction

of

σ φ v1 ... vn ,

in which the symbols v1,..., vn denote the representations of

the values of the corresponding variables immediately prior to

the execution of S, and φ denotes the representation of the

program remainder of S.

A key step in representing a programming statement is to

define a suitable equation of the form (i) or (ii) for it.

(The choice of φ’ is, of course, based on our intuitive

understanding of the effect of the statement.) For the sake of

motivation, we will include the details of this step in

describing the first few of our representations.

78

Let us now look at the assignment statement vi:= e in the

environment (v1,...,vn). The φ’ in this case is obtained from

φ by setting the argument vi to e. Thus, in effect, this

assignment statement behaves as the function σ such that

 (σ(φ))(v1,...,vn) = φ’(v1,...,vn)

 = φ’(v1,...,vi-1,e,vi+1,...,vn) .

In SK notation, this amounts to

 σφv1...vn → φv1...vi-1 {e}(v1,...,vn)vi+1...vn) .

Accordingly, we adopt the following SK representation of

assignment statements:

(5-1) Representation Rule.

{vi:= e }(v1,...,vn) ≡ Aφv1...vn: φv1...vi-1 {e}vi+1...vn) .

(We recall from Section 3.2 the convention that in a

representation rule, the environments of all representations

are considered to be the same as that of the construct under

representation, unless specified otherwise. Also, we assume in

the above representation that any type conversion needed for

the assignment has been incorporated within e itself.)

It has been mentioned earlier that only the variables

79

contained in the environment of an expression can occur in the

expression. Thus, no indeterminates other than v1,...,vn can

occur in the ob form {e} in the above representation rule. It

follows from the abstractions specified in that rule that the

SK representation of an assignment statement is an ob, not an

ob form containing occurrences of indeterminates.

 Note that the multiple assignments of ALGOL 60 [27] and

the collateral (parallel) assignments of ALGOL 68 138] present

no special problem. Omitting the formal rules for their

representation, we simply illustrate their treatment in the

following example.

Example. Presented side by side below are some assignment

statements and their SK representations. Note that the

environment of the first two statements is (x,y), and of the

next three is (z,y
1
,x,y

0
); the superscripts in the latter

environment are block level numbers, and are used to

distinguish the two variables designated by the same

identifier.

 Program Statement Representations

begin integer x,y;

 x:=2; Aφxy:φ2y (or, Aφx:φ2)

 y:=x+l9; Aφxy: φx(+xl9)

begin integer z,y;

 y:=x-5; Aφzy
1
xy

0
:φz(-x5)xy

0

 x:=y:=z+(x+y) ; Aφzy
1
xy

0
:φz(+z(+xy

1
))(+z(+x y

1
))y

0

80

 (y:=z, z:=y); Aφzy
1
xy

0
:φy1zxy

0

...

end

end

In order to express the representation of assignments

explicitly as obs rather than abstracts, we introduce some new

obs. Although their names are suggestive of the programming

actions they represent, we emphasize that they

are just ordinary obs, with no imperative notions attached to

them.

(5-2) Definition.

 evalm ≡ C(B

!

n

2

I°rotrn+1) , n ≥ 1.

 storei ≡ swap

!

i+2

2

K , i ≥ 1.

 assign

!

n

i

 ≡ CBstorei°evaln , n ≥ i ≥ 1.

The following reduction properties are easy to derive.

(5-3) Rule.

 evaln fφx1...xn → φ(fx1...xn)x1...xn .

 storei φex1...xi → φx1...xi-1e .

assign

!

n

i

 fφ x1...xn → φx1...xi-1(fx1...xn)xi+1...xn .

Hence, we have the following alternative to (5-1).

81

(5-4) Representation Rule.

 {vi:= e }(v1,...,vn) ≡ assign

!

n

i

 (Av1...vn:{e}) .

Example. Consider the statement y := x+19 in the environment

(x,y). In this case, we have

 {e} ≡ {x+19} ≡ +x19 ,

 Axy:{e} ≡ B

!

2

2

+I

!

2

1

 (K219) , by (4-1),

 {y := x+l9}(x,y) ≡ assign

!

2

2

 (B

!

2

2 + I

!

2

1

 (K219)) .

To conclude this section, we point out the fact that we

have eliminated the concepts of memory and address from our

model, and have reduced the concept of assignment to that of

substitution or function evaluation.

82

3.6 Compound Statements

Consider the compound statement S begin S1;S2 end

appearing in the environment (v1,...,vn). Let F be the segment

of the program that follows S. We can interpret the program

segments F and (S;F) to be two functions φ and φ’,

respectively, of the arguments v1,...,vn , and we are

interested in the representation σ of S with the functional

transformation property

(σ(φ))(v1,...,vn) = φ’(v1,...,vn) .

Now the execution of (S;F) has precisely the same effect as

(S1;S2;F). Denoting by φ* the functional interpretation of the

program segment (S2;F), and by σ1 and σ2 the representations of

the statements S1 and S2 , respectively, we have

 (σ1(φ*))(v1,...,vn) = φ’(v1,...,vn) ,

 (σ2(φ))(v1,...,vn) = φ*(v1,...,vn) .

The above functional conditions can be expressed in SK as the

following reduction relations:

 σ φ v1...vn → φ’v1...vn ,

 σ1φ*v1...vn → φ’v1...vn ,

 σ2φ v1...vn → φ*v1...vn ,

These relations will certainly hold if we choose

83

φ* ≡ σ2φ , φ’ ≡ σ1(σ2φ) , and hence, σ ≡ Aφ:σ1(σ2φ) .

The generalization to the case of an n-component compound

is now obvious. So we are led to the following SK

representation of compound statements:

(6-1) Representation Rule.

{begin S1;S2;...;Sn end} ≡ Aφ:{S1}({S2}(...({Sn}φ)...))

 or, ≡ [{S1),{S2},...,{Sn}]

(where the notation [...] for nests is as introduced in

Definition 2.4-20).

 Notice the convenient fact that in the above nest the

individual statement representations appear from left to right

in the same order in which the statements occur in the compound

(cf. Stratchey [36]).

Example. The representation of compound statements is

illustrated below. Individual statement representations are

shown on the same line as the statements (on the last line for

multiple-line statements), and are given names for reference

purposes. The environment is assumed to be (x,y).

 Statements Representations

(i) begin

 x := 2; a ≡ Aφxy:φ2y

84

 y := x+3; b ≡ Aφxy:φx(+x3)

 x := y+x c ≡ Aφxy:φ(+yx)y

 end d ≡ Aφ:a(b(cφ))

(ii) begin

 y := 5; e ≡ Aφxy:φx5

 x := y+2 f ≡ Aφxy:φ(+y2)y

 end g ≡ Aφ:e(fφ)

The compound statements (i) and (ii) are intuitively

equivalent. How can their equivalence be demonstrated in our

model? The obs representing the statements (i) and (ii),

namely, d and g, must have the same interpretation as a

function of the variables φ, x, and y. Alternatively, d and g

must perform the same reduction when applied to the same obs φ,

x, and y; that is,

 d φ x y ↔ g φ x y . (*)

To verify (*), we reduce both sides to the same ob.

 g φ x y ≡ Aφ:e(fφ)φ x y

→ e(fφ) x y, since φ oc/ e and φ oc/ f,

85

 ≡ (Aφxy:φx5)(fφ) x y

 → f φ x 5

 ≡ (Aφxy:φ(+y2)y) φ x 5

 → φ (+ 5 2)5

 → φ 7 5 .

Similarly, it is easy to see that

d φ x y → φ 7 5 .

In general, to show that two statements appearing in the

same environment of n variables are equivalent, we need to

prove that the SK representations f1 and f2 of those statements

are mutually (n+1)-interconvertible (Definition 2.1-l1). This,

however, is an unnecessarily strict condition. It is often the

case that in all the intended executions of a program (that is,

with the input data satisfying the program specifications), the

values of program variables range over certain restricted

domains only. In such cases, the equivalence of two statements

in the environment of n variables may be established by proving

that, for x1,...,xn representing not all arbitrary obs but only

the possible values corresponding to the variables x1,...,xn of

the environment, and for all obs φ, it is the case that

f1 φ x1...xn ↔ f2 φ x1...xn .

86

3.7 Blocks

 Next, let us consider a block S whose head declares the

variables u1,...,um and initializes these to the values
3

c1,...,cm , and whose body consists of the statements

S1,...,Sp, in that order. The execution of S can be broken

down into three operations performed in succession:

1) Extension of the existing environment by the variables

u1,...,um (initialized at c1,...,cm).

2) Execution of the compound begin S1;...;Sp end.

 3) Deletion of the, variables u1,...,um from

 the environment.

 Let these three operations be denoted by the functions α,

β, and γ. Let (v1,...,vn) be the environment of S. Then with

the obvious significance of other symbols, we have

(α(φ))(v1,...,vn) = φ(c1,...,cm,v1,...,vn)

 (β(φ))(u1,...,um,v1,...,vn) = (σ1(σ2(...(σp(φ))...)))

 (u1,...,um,v1,...,vn)

(γ(φ))(u1,...,um,v1,...,vn) = φ(v1,...,vn)

(σ(φ))(v1,...,vn) = (α(β(γ(φ))))(v1,...,vn)

 By expressing the above in SK notation, and making use of

proper abstractions and simplifications, we obtain

σ ≡ Aφv1...vn: σ1(σ2(...(σp(Au1...um:φ))...))c1...cmv1...vn .

3 We assume that the expressions c1,...,cm do not contain

the variables u1,...,um; they may, however, contain the

variables in the environment of S.

87

Consequently, we choose the following representation of blocks.

(7-1) Representation Rule.

{begin <type> u1 := c1;...;<type> um := cm;

 S1;...;Sp end}(v1,...,vn)

 ≡ Aφv1...vn:{Sl}F({S2}F(...({Sp}F(Au1...um:φ))...))

{cl}E...(cm}Ev1...vn ,

 where E ≡ (v1,...,vn) and F ≡ (u1,...,um,v1,...,vn) .

(We assume that the expressions ci include any needed type-

conversions.)

Using the notation of nests and tuples (Definitions 2.4-

20, 2.4-24), an explicit combinatory description of the above

abstract is

[<{cl}E,...,(cm}E> , [{S1}F,...,{Sp}F ,Km]]

In the case that the variables are left uninitialized in

the block-head -- as is normal in ALGOL 60 -- any arbitrary ob

can be used for {ci} in the above representation. One might

wish to use for this purpose an ob which would play the role of

the everywhere undefined function. This function is modelled,

for example, by the ob Ω (Definition 2.4-1) having the property

88

Ω a → Ω for all a. It should be noted, however, that Ω does

not possess a normal form. As a result, if Ω is used in place

of the missing ci’s in (7-1), then the presence of any

variables that remain undefined throughout the program

execution would cause the program representation to behave as

if the program contained an infinite loop.4

 Being the representation of statements, the components

{Si}F, 1 ≤ i ≤ p, of the right-hand-side of (7-1) do not

contain any indeterminates. But being the representations of

expressions in the environment (v1,...,vn), {ci}, 1 ≤ i ≤ m, may

possibly contain v1,...,vn. If the variables declared in the

block head are not initialized, then, by recourse to a suitable

abstraction algorithm (Theorem 2.2-4(3)), the indeterminates

v1,...,vn can be dropped from the right-hand-side of (7-1). We

thus obtain the following simplified representation:

(7-2) Representation Rule.

{begin <type>u1;...;<type>um;S1;...;Sp end}(v1,...,vn)

 ≡ Aφv1...vn:{Sl}F({S2}F(...({Sp}F(Au1...um:φ))...))ΩΩ...Ω
 m times ↑
 where F ≡ (u1,...,um,v1,...,vn) .

4 This situation may be avoided by using the ob

Ω’ ≡ D(B(S(BSC))(BC(C(KD)))K

 instead of Ω. It is easy to verify both that Ω’ is
 normal and that, for all a, Ω’a → Ω’ .

89

Note that if only constants are used to initialize the declared

variables, then again the variables vi can be dropped, and the

representation is similar to (7-2), except that the constants

are used instead of the corresponding Ω.

Example. The environment of the following block is assumed to

be (w). The individual statements and their representations

are given side by side below. The representations have been

given identifying names for reference purposes.

 Statements Representations

begin integer x:=5,y;

 y := x-7; a ≡ Aφxyw:φx(-x7)w

 begin integer z;

 z := 3+y; b ≡ Aφzxyw:φ(+3y)xyw

 x := z × x c ≡ Aφzxyw:φz(×zx)yw

 end d ≡ Aφ:b(c(Az:φ))Ω

end e ≡ Aφ:a(d(Axy:φ))5Ω

Explicit combinatory definitions of the above obs, in

accordance with our previous representation rules, are as

follows:

a ≡ assign

!

3

2
 (B

!

3

2 - I

!

3

1
 (K37)) ,

b ≡ assign

!

4

1

 (B

!

4

2

+(K43)I

!

4

3
) ,

 c ≡ assign

!

4

2

 (B

!

4

2

 x I

!

4

1

 I

!

4

2

) ,

90

 d ≡ [<Ω>,[b,c,K1]] ,

 e ≡ [<5,Ω>,[a,d,K2]] .

91

3.8 Input-Output

We shall assume for simplicity that the program input and

output operations are each restricted to a single file. A file

of items al,...,an will be represented by the tuple

 < {al},...,{an}> .

(The empty file is represented by the null tuple < > ≡ I.) For

given ob forms u and v, we will abbreviate the ob form insert u

v by u,v ; also we will denote u,v,w by u,v,w , and so on. By

Rule 2.4-25 (2), we have

 <xl,...,xn>,y ≡ <xl,...,xn,y> ,

I,xl,...,xn ≡ <xl,...,xn> ,

so that “,” may be regarded as the operation of writing on a

file, and the file resulting from writing an item a on a given

file b may be represented by {b},{a} .

 Now let S be a statement appearing in the environment

v1,...,vn of a program, and let σ be the ob representing S.

In our discussion so far, σ has been defined as an abstract of

the form

 Aφv1...vn:... (*)

with the indeterminate φ standing for the program remainder of

S. Accordingly, the execution of S has been modelled by the

reduction of the ob

 σ φ v1...vn ,

92

in which the underlined symbols denote the representations of

the values of the corresponding variables immediately prior to

the execution of S. In order to take input-output into

account, we will generalize the representations so as to model

the above execution by the reduction of the ob

(8-1) σ φ v1...vn w u1 u2...um ,

with w denoting the output file and ui the i
th
 of the m items

remaining on the input file at the moment of execution. (As

soon as an item is read, it is supposed to disappear from the

input file.) This arrangement requires that the

representations of statements be generally of the form

 A φ v1 ... vn o i1 ... im : ... ,

where o,i1,...,im are the extra indeterminates corresponding to

the output file and input items. It must be evident, however,

that the representations of those statements which do not

involve input-output can be simplified back to the form (*) by

choosing abstracts properly. Furthermore, in the case of

input-output statements, the following choice of SK

representations is obvious:

(8-2) Representation Rule.

 {read vj}(v1,...,vn) ≡ Aφv1...vno: φv1...vj-1ivj+1...vno ,

 {write e}(v1,...,vn) ≡ Aφv1...vno: φv1...vn o,{e} ,

where e is some expression to be output.

93

In order to provide explicit ob representation of input-

output statements, we introduce the following obs

(8-3) Definition.

 (1) read

!

n

j
 ≡ swap

!

n+3

j+1
 K(n+1) , 1 ≤ j ≤ n ,

 (2) writen ≡ [B

!

n+1

2

SK(n),K,(CC)(n)] .

(8-4) Rule.

 (1) read

!

n

j
 φx1...xn o i → φx1...xj-1 i xj+1...xn o ,

 (2) writen fφx1...xno → φx1...xn o,fx1...xn .

Proof of (2).

writen fφx1...xno

≡ [B

!

n+1

2

SK(n),K,(CC)(n)]fφx1...xno

→ B

!

n+1

2

SK(n)(K((CC)(n)f))φx1...xno , by Rule 2.4-21,

→ S(K(n)φx1...xn)(K((CC)(n)f)φx1...xn)o

→ K(n)φx1...xno(K((CC)(n)f)φx1...xno)

→ φx1...xn((CC)(n)fx1...xno) , by Rule 2.4-6,

→ φx1...xn(Co(fx1...xn)o)

→ φx1...xn(Co(fx1...xn)) ≡ φx1...xn o,fx1...xn .

 In view of the above rules, we propose the following

alternative to (8-2):

(8-5) Representation Rule.

 {read vj}(v1,...,vn) ≡ read

!

n

j
 ,

 {write e}(v1,...,vn) ≡ writen (Av1...vn:{e}) .

94

3.9 Programs

Let the input file initially presented to a given program

consist of items i1,...,ip , and let o1,...,oq constitute the

items of the final output file produced by the program. As

remarked in Section 3.1, we wish to choose a program

representation so as to obtain the relation

 {program }{i1 }...{ip } → < {o1 },...,{oq }> . (i)

Now the execution of a particular statement of the program is

modelled by the reduction of an ob given by (8-1) in the

previous section. Suppose that as an instance of such a

statement we take the entire outermost block of the program.

Recalling the significance of symbols used in connection with

(8-1), we obtain the following conditions:

σ ≡ {program block }

 n = 0 as the environment is null ,

 w ≡ I , as the output file may be considered empty at the

 start of the program ,

 m = p , and uj = ij , l ≤ j ≤ p.

Furthermore, in place of φ , the “null” program remainder, we

may arbitrarily choose to employ the ob I. On substituting

these values, the execution of the program is seen to amount to

the reduction of the ob

{program block } I I {i1 }...{ip } . (ii)

95

Next, consider (8-1) again -- but this time for the case when

the entire program has been executed. Now we have:

 σ ≡ I, the null program segment,

 n = 0 , as the environment is null,

 w = < {o1 },...,{oq }> , representing the final

 output file,

 m = 0 , assuming the program exhausts the input file,

 φ ≡ I.

Thus, (8-1) in this case becomes the ob

 I I < {o1 },...,{q } > ,

which reduces to

 < {o1 },...,{q } > . (iii)

If our representations work properly, then the ob

(ii) should reduce to the ob (iii); that is,

{program block }I I {i1 }...{ip } → < {o1 },...,{oq }>. (iv)

Comparing (i) and (iv), we obtain:

(9-1) Representation Rule.

 {program} ≡ (program block) I I .

(9-2) Remarks.

(1) From (iv) and (9-1) it follows that

 < {i1 },...,{ip } > {program} → < {o1 },...,{oq }> ,

96

that is,

<input file> [program} → <output file> .

(2) In the ob representing a program, the component

({program block} I) will be found to be of interest by itself;

we will refer to it as the routine of the program.

Example. Following is the representation of the simple program

mentioned at the beginning of Section 3.1.

Statements Representations

begin integer a,b,c;

 read a; f ≡ Aφabcoi:φibco

 read c; g ≡ Aφabcoi:φabio

 b := a+c; h ≡ Aφabc: φa(+ac)c

 write b; j ≡ Aφabco:φabco,b

 b := b-2xc; k ≡ Aφabc:φa(-b(×2c))c

 write b j

end m ≡ Aφ:f(g(h(j(k(j(Aabc:φ))))))ΩΩΩ

Since the ob in represents the program block, the

representation of the whole program is p ≡ mII. Now it can be

verified that, for all integers a and b,

p a b → <a+b,a-b> .

Thus the program representation p indeed abstracts out the

input-output behavior of the program (cf. Section 3.1).

97

The execution trace of the above program, when run with the

integers 5 and 3 as data items, is reflected in the following

SK reduction.

p 5 3 ≡ m I I 5 3 → f(g(h(j(k(j(Aabc:I))))))Ω Ω Ω I 5 3

→ g(h(j(k(j(Aabc:I))))) 5 Ω Ω I 3

→ h(j(k(j(Aabc:I)))) 5 Ω 3 I

→ j(k(j(Aabc:I))) 5 (+ 5 3) 3 I

→ j(k(j(Aabc:I))) 5 8 3 I

→ k(j(Aabc:I)) 5 8 3 I,8 ≡ k(j(Aabc:I)) 5 8 3 <8>

→ j(Aabc:I) 5 (-8 (× 2 3)) 3 <8> → j(Aabc:I) 5 2 3 <8>

→ (Aabc:I) 5 2 3 <8>, 2 → (Aabc:I) 5 2 3 <8,2>

→ I <8,2> → <8,2> .

3.10 Conditional Statements

Recall that the SK representation of a Boolean expression

b has the property

 {b} p q → p , if b has the value true,

 → q , if b has the value false.

In view of the above property, we choose the representation of

a two-branch conditional statement as follows:

(10-1) Representation Rule.

{if b then S1 else S2 }(v1,...,vn)

 ≡ Aφv1...vn: {b}{S1}{S2}φv1...vn .

98

For the purpose of representation, a one-branch conditional

statement (an if statement, in ALGOL 60 terminology) may be

viewed as a two-branch conditional with a dummy or “do-

nothing” statement for the second branch. When appearing in

the environment (v1,...,vn), the “do-nothing” statement can

obviously be represented by

 Aφv1...vn: φv1...vn ,

that is, I. Substituting the “do-nothing” statement for S2 in

(10-1), we obtain the

(10-2) Representation Rule.

 {if b then Sl}(v1,...,vn) ≡ Aφv1...vn:{b}{S1}Iφv1...vn .

In order to describe the above representations explicitly

as obs, we first introduce a new ob sequence and its associated

reduction rule.

(10-3) Definition. condn ≡ β°(B

!

n

3
I).

(10-4) Rule.

condn bs1s2φx1...xn → bx1...xn(s1φx1...xn)(s2φx1...xn) .

It is easy to see that if b is a Boolean expression, then for

all ob forms p, q, and r, the following interconvertibility

relation holds:

{b}pqr ↔ {b}(pr)(qr) .

Applying this relation to (10-1), we may

99

obtain the following alternatives to (10-1) and (10-2).

(10-5) Representation Rule.

(1) {if b then S1 else S2 }(v1,...,vn)

 ≡ Aφv1...vn: {b}({S1}φv1...vn)({S2}φv1...vn)

 ≡ condn (Av1...vn: {b}{S1}{S2} .

(2) {if b then Sl}(v1,...,vn)

 ≡ Aφv1...vn: {b}({S1}φv1...vn)(φv1...vn)

 ≡ condn (Av1...vn: {b}{S1}I .

3.11 Arrays

Arrays can be interpreted as tuples and combinations of

tuples. An array of a single dimension is represented by a

tuple of the representations of the individual array elements,

taken in the order of the lowest to the highest subscript. An

array of dimension n+1 is represented by a tuple whose elements

are the representations of the n-dimensional subarrays (or

slices, in the ALGOL 68 terminology [38]) obtained by fixing

the first subscript in turn from the lowest to the highest

possible value. For example, the array A [l:2, 1:3] is

represented by

< < {A11},{A12},{A13}> , < {A21},{A22},{A23}> > ,

where (Aij} is the representation of the array element Aij. As

in the case of simple variables, an array identifier can

100

itself be used for the indeterminate assigned to the array

variable.

With the above interpretation of arrays, we next describe

the representation of subscripted variables in expressions,

assignments to subscripted variables, and array declarations.

In this description, we assume for simplicity that all arrays

have the lowest subscript bound of 1. To obtain the correct

representation in the case of an array one of whose subscript

bounds, l, is different from 1, one simply needs to first

increment the corresponding bound and subscript expressions

throughout the program by 1-l.

1) Subscripted variable as an operand in an expression

The representation in this case is just the corresponding

element of the tuple representing the array. Thus, given the

declaration <type> array v [1:n], we have, on the basis of Rule

2.4-25 (3),

 {v [i]} ≡ v elem

!

n

i

 .

This representation is inadequate, since, in general, n and i

are given as expressions rather than constants, and their

values may not be known at the time of SK translation of the

program. However, we have seen (cf. end of Section 2.4) that

there exists an ob elem such that for all obs a and b if a → i

and b → n, where i, n represent natural numbers i, n such that

101

1 ≤ i ≤ n,

elem a b → elem

!

n

i

 .

Hence, given the array declaration v [1:e], we specify

{v [f]} ≡ v(elem [f}{e}) .

More generally, for the array v [1:e1,...,1:em], we have

 {v [f1,...,fm]} ≡ v(elem {f1}{e1})...(elem {fm}{em}).

2) Assignments to subscripted variables

In this case, the representation consists in replacing

the designated element of the tuple representing the array with

the representation of the new value. Let us first consider the

arrays of a single dimension only. We have already seen

(Section 2.4, end) that there exists an ob replace such that,

for all natural number representations i, m such that 1 ≤ i ≤ m

and for all ob forms a1,...,am,b,

 <a1,...,am>(replace i m b) → <a1,...,ai-1,b,ai+1,...,am> .

Hence, given the declaration <type> array vj[1: e], we have

{vj[f] := g}(v1,...,vn)

≡ Aφv1...vn: φv1...vj-1(vj(replace {f}{e}{g}))vj+1...vn .

The representation in the case of a higher dimensional

array involves the replacement of all slices of the array

102

that are affected by the assignment. It is easy to see that,

when the array vj is declared to be of bounds [l:e1,...,l:em],

the following is a suitable representation:

 {vj (f1,...,fm] := g }

 ≡ Aφv1...vn: φv1...vj-1hvj+1...vn ,

where

h ≡ vj(replace {f1}{e1}(

 vj((elem {f1}{e1}) (replace {f2}{e2}(

 vj((elem {f1}{e1})(elem {f2}{e2}) (replace {f3}{e3}(

 ...

 vj((elem {f1}{e1})...(elem {fm-1}{em-1})

 replace {fm}{em}{g}))...)))))))) .

3) Array declaration

We treat array declarations in the same way as the

declaration of simple variables with respect to environments

and the representation of initialized variable values.

However, there is the following exception: if an array is not

initialized at the time of declaration, the block

representation is obtained by assuming all the array elements

to be Ω. Thus, for an array with the bound pairs [1:2,1:3],

the initial value is represented by <<Ω,Ω,Ω>,<Ω,Ω,Ω>>.

103

Since, in general, array bounds may be specified by

expressions, we need to create tuples of arbitrary dimensions

and sizes in which all elements are Ω. This will be possible

by means of the ob tupinit having the property

 tupinit 1 m → <Ω,Ω,...,Ω> ,

 ↑ m elements

 tupinit n+l m1...mn+1 → <a,a,...,a> , (*)

 ↑ m1 elements

where a ≡ tupinit n m2...mn+1 .

 In order to define tupinit, we need the following

definition, making use of some obs of Section 2.4:

(11-1) Definition. maketup ≡ β(TW)pred tup .

(11-2) Rule. maketup n x → <x,..,x> , for integer n > 0.

 ↑ n times

(11-3) Definition.

tupinit0 ≡ Ω ,

tupinitn+1 a1a2...an+1

 ≡ maketup a1 (tupinitn a2...an+1) .

Now from Table 2.4-19 we can define an ob such that for all

natural numbers n ≥ 0,

 tupinit n → tupinitn .

104

It is quite straightforward to check that with this choice of

tupinit, the relations (*) are indeed satisfied.

Example. The array representations discussed above are

illustrated on the following block which is assumed to occur in

the environment (n).

 Statements Representations

begin integer array p [1:n],

 q [1:2,1:3]; integer r;

 r := q [n,n+1]; a ≡ Aφpqrn:φpq(q(e1em n 2)

 (elem(+ n 1)3))n

 p [r]:= r+3 b ≡ Aφpqrn:φ(p(rep1ace

 rn(+ r 3)))qrn

 end σ ≡ Aφn:a(b(Apqr:φ))

 (tupinit 1 n)

 <<Ω,Ω,Ω>,<Ω,Ω,Ω>>Ωn

105

CHAPTER 4

ITERATION AND JUMP STATEMENTS

4.1 Recursive Specification of Obs

In dealing with program loops, we shall need obs having

the property that they are equiform to one or more components

of certain obs to which they reduce. That is, these obs are to

possess given reduction properties of the form

 F → ...F...F... . (i)

We refer to such obs as recursively specified obs, and describe

two approaches to define these.

One approach to define recursively specified obs is to

admit them as primitive obs, taking the respective properties

required of them as the reduction rules associated with them.

Since the reductions rules so added are recursive, in the sense

that they reduce an ob in terms of itself, it is not at all

obvious that the Church-Rosser property would hold in the

extended calculus. But it follows from the work of Rosen [32]

that the Church-Rosser property is indeed preserved by such

extensions, and, consequently, most other properties of

reduction, such as the uniqueness of normal forms and the

correctness of the standard-order reduction algorithm, also

continue to be valid.

106

Another approach to defining the obs specified by the

properties of the form (i) is to look for solutions of (i),

treating such formulas as reduction relations involving an

unknown. Now, in general, (i) may be satisfied by more than

one solution, so that we may have the choice of different

explicit definitions for the same ob. There is, however, no

reason to expect that these different definitions of an ob are

compatible to each other or to the definition of the ob as a

new primitive -- compatible in the sense that all reduction

sequences, which start with an ob having a recursively

specified ob as a component and which use the different

definitions of the recursively specified ob, yield the same

normal form (if any). In fact, incompatibilities do occur, as

the following trivial example indicates: Let F be an ob

specified by

F → F,

and let it be required to reduce the ob G ≡ SF. By the

definition of reduction (Definition 2.1-4), the given property

of F is satisfied by every ob. In particular, with F ≡ S and

F ≡ K chosen as two possible definitions of F, the same ob G

may be reduced to SS in one case and to SK in another!

Moreover, both these results are in conflict with the one

obtained by taking F as a primitive ob and F → F as the

associated reduction rule. For, then, G does not even have a

107

normal form!

Thus, not all solutions of (i) are acceptable for a

definition of the ob F. Following Morris [26], to characterize

those solutions of (i) for which the resulting definitions of

the ob F are compatible with the definitions of the first

approach (of taking (i) as a reduction rule), we may proceed

thus. Let us introduce a partial order on obs as follows:

For obs a and b we say that a is extended by b, in symbols, a ≤

b, if, for all obs c, it is the case that ca ↔ cb whenever ca

possesses a normal form. For example, it can be shown that Ω ≤

b for all obs b, where Ω is as given in Definition 2.4-1. Now,

the particular solutions of (i) that we are interested in have

the property that they are extended by all solutions of (i).

In other words, for an explicit definition of the ob F

specified by (i), we can take a minimal solution of (i) (with

respect to ≤).

For example, consider the relation F → F again. Since

this relation is satisfied by all obs, Ω is a minimal solution

for it. Thus, F ≡ Ω may be taken as a definition of the ob

specified by F → F. Under this definition of F, the ob G ≡ SF

does not possess a normal form. This agrees with the result

obtained by taking F as a primitive ob, with F → F as its

associated reduction rule.

To obtain an explicit definition of the ob F given by (i),

we may proceed as follows: Let x be an indeterminate,

108

and let

 H ≡ Ax: ...x...x...

be an abstract with respect to x of the ob form obtained from

the right-hand-side of (i) by replacing the components equiform

to F by x. Now
 YH → H(YH) , by Rule 2.4-1(18),

 → ...(YH)...(YH)... , by Theorem 2.2-4.

Hence, YH is seen to be a solution of (i). It has been shown

by Morris [26] that this solution is also minimal.

Consequently,

 F ≡ YH ≡ Y(Ax:...x...x...) (ii)

is an explicit definition of the ob specified by (i).

 In general, (i) has infinitely many, mutually

noninterconvertible, minimal solutions, which are, however,

equivalent in the sense that they all have the same intuitive

interpretations as functions. The choice of any one of these

for the explicit solution of (i), such as YH in (ii), is rather

arbitrary. To leave this choice unspecified, while emphasizing

the minimality of the chosen solution, one may employ the µ-

notation of deBakker [3]. In this notation, the minimal

solution of (i) is designated by the µ-expression

µx:...x...x... ,

109

where, the ob form to the right of the colon is obtained from

the right-hand-side of (i) by replacing F with the

indeterminate x.

Since the formula (i) has the appearance of a relation,

which may not necessarily suggest that it is intended to define

anything, we shall use the notation

 F ≡ ...F...F...

to indicate that the ob F is being defined as specified by (i).

The above treatment of recursively specified obs can also

be generalized to include the simultaneous recursive

specification of several obs, such as

 F1 → H1F1...Fn ,

 ... (iii)

 Fn → HnF1...Fn ,

where F1,...,Fn do not occur as components in H1,...,Hn. The

definitions of F1,...,Fn may be obtained as follows:

1) The F’s specified by (iii) are considered primitive

obs whose associated reduction rules are just the

formulas (iii).

2) The F’s specified by (iii) may be explicitly defined

as the minimal solutions of the system of

110

reduction relations (iii).

An explicit solution may be obtained as follows: Consider

 <H1F1...Fn,...,H1F1...Fn>

 ← funtup

!

n

n

 H1...Hn F1...Fn, by Rule 2.4-25,

 ← <F1,...,Fn>(funtup

!

n

n

 H1...Hn)

 ← <funtup

!

n

n

 H1...Hn><F1,...,Fn> .

Hence, we may take, for 1 ≤ i ≤ n,

 Fi ≡ Y <funtup

!

n

n

 H1...Hn> elem

!

n

i

 .

As before, we shall employ the notation

 F1 ≡ H1F1...Fn ,

 ...

 Fn ≡ HnF1...Fn ,

to indicate the definition of the obs F1,...,Fn by means of the

formula (iii).

111

4.2 Iteration Statements

The representation of the for statement of ALGOL 60 is

obtained by expressing this statement in terms of the simple

(non-ALGOL 60) while loop of the form while ... repeat... . To

represent the latter, consider the statement while b repeat S

appearing in the environment (v1,...,vn). Calling this

statement by the name T, we may (recursively!) describe it, for

the purpose of SK representation, as

if b then begin S;T end .

Now the formulas for the representation of compound and

conditional statements, (3.6-1) and (3.10-5(1)) respectively,

are applicable to the above statement, so that its

representation {T} is, recursively, the ob

 Aφv1...vn: {b}((Aφ: {S}({T}φ))(φv1...vn) (φv1...vn)

 ↔n+1 Aφv1...vn: {b}({S}({T}φ))φv1...vn .

Thus, we adopt the

(2-1)Representation Rule.

 {while b repeat S}(v1,...,vn)

 ≡ µx: Aφv1...vn: {b}({S}(xφ))φv1...vn .

Alternative definitions of the same ob, call it X, are

X ≡ Aφv1...vn: {b}({S}(Xφ))φv1...vn ,

X ≡ Y(Axφv1...vn: {b}({S}(xφ))φv1...vn) ,

X ≡ condn {b} [{S},X] I .

112

Example. At this point, we illustrate the SK representations

introduced so far by means of a complete program. Also, as an

application of the model, we derive the correctness of the

program in terms of its representation. Given below are the

individual statement representations, shown on the same line as

the statements (or on the last line for multiple line

statements), and have been designated names for reference

purposes.

begin integer x,y;

 read x; a ≡ Aφxyoi:φiyo

 y := 0; b ≡ Aφxy:φx0

begin integer z;

 z := 0; c ≡ Aφzxy:φ0xy

 while z < x repeat

 begin

 y := l+y+2×z; d ≡ Aφzxy:φzx(+(+1y)(×2z))

 z := z+l e ≡ Aφzxy:φ(+z1)xy

 end f ≡ Aφ:d(eφ)

 end while g ≡ Aφzxy:(<zx)(f(gφ))φzxy

 h ≡ Aφ:c(g(Az:φ))Ω

 write y j ≡ Aφxyo: φxy o,y

end k ≡ Aφ: a(b(h(j(Axy:φ))))ΩΩ

 {program ≡ P ≡ kII

113

We wish to prove that on reading a nonnegative integer n,

this program will print out the integer n
2
. According to our

input-output conventions, we need to show that

 P n → <n
2
> , for all integers n ≥ 0 . (i)

This is done in four steps, as follows:

(a) We show that, for all obs φ, and all integers n and i,

 g φ i n i
2
 → φ i n i

2
 , if i ≥ n, (ii)

g φ i n i
2
 → g φ i+1 n (i+1)

2
 , if i < n . (iii)

By the definition of g, we obtain

 g φ i n i
2
 → (< i n) (f(gφ)) φ i n i

2
 .

If i ≥ n, then (< i n) → false, so that (ii) is immediate.

Otherwise, (< i n) → true, and the above ob

 → f(gφ)i n i
2
 → d(e(gφ))i n i

2
 → e(gφ)i n(+(+ 1 i

2
)(× 2 i))

 → gφ i+1 n (i+1)
2
 .

(b) Next, for all integers n and i such that 0 < i ≤ n, we have

g φ 0 n 0 → g φ i n i
2 . (iv)

This is proved by induction on i. From (iii) one easily

verifies (iv) both for i = 1, and for i = j+l ≤ n when the case

for i = j < n is assumed.

114

(c) Next, we claim that for all integers n ≥ 0, it is

the case that

 h φ n 0 → φ n n
2
 . (v)

For, we have

 h φ n 0 ≡ (Aφ:c(g(Az:φ))Ω)φ n 0

 → c(g(Az:φ))Ω n 0

 → g(Az:φ) 0 n 0 .

Now if n = 0, then from (ii) it follows that

 g(Az:φ) 0 n 0 → (Az:φ) n n n
2
 → φ n n

2
 .

On the other hand, if n > 0, then for the case i = n (iv)

yields

 g(Az:φ) 0 n 0 → g(Az:φ) n n n
2

 → (Az:φ) n n n
2 by (ii)

 → φ n n
2
 .

(d) Finally, to prove (i) we simply use the definitions

of the obs a through k, obtaining, for all integers n ≥ 0,

 P n ≡ k I I n → a(b(h(j(Axy:I)))) Ω Ω I n

→ b(h(j(Axy:I))) n Ω I

→ h(j(Axy:I)) n 0 I

→ j(Axy:I) n n
2 I by (v)

→ (Axy:I) n n
2 I,n

2

 → I,n
2

 → <n
2
>

115

Returning to the discussion of iteration statements, we

can express the general for statement of ALGOL 60 in terms of

the simple while loop treated above. For example, we can

reformulate the statement

 for vi := e1 step e2 until e3 do S

as

begin vi := e1 while (vi - e3) × sign(e2) ≤ 0 repeat

 begin S; vi := e1 + e2 end end .

The latter form can then be represented as an ob by employing

the representations of compound and while statements. Omitting

the details of derivation, we list below the SK representations

for the three cases of for list elements, namely, arithmetic

expression, (ALGOL 60) while element, and step-until element:

 {for vi := e do S}(v1,...,vn)

 ≡ Aφv1...vn: {S}φv1...vi-1{e}vi+1...vn .

 {for vi := e while b do S}(v1,...,vn)

 ≡ µx:Aφv1...vn:(Avi:{b}){e}({S}(xφ))φv1...vi-1{e}vi+1...vn

 ≡ Y(Axφv1...vn:(Avi:{b}){e}({S}(xφ))φv1...vi-1{e}vi+1...vn).

 {for vi := e1 step e2 until e3 do S}(v1,...,vn)

≡ Axφv1...vn: (Y(Axφv1...vn:{(vi-e3)×sign(e2) ≤ 0}

 ({S}(Av1...vn:xφv1...vi-1{vi+e2}vi+1...vn))

 φv1...vn))φv1...vi-1{e1}vi+1...vn .

116

4.3 Jump Statements

We regard the execution of the statement S ≡ goto L in a

program as the substitution of the part of the program

following L for the one following S. This viewpoint provides

us with the representation of both labels and jump statements.

 A label is identified with the part of the program

following it. To be accurate, the representation of a label L

occurring in a program P is taken to be the routine (Remark

3.9-2(2)) of the program P’ obtained from P by deleting all the

statements, but retaining the declarations, that appear above

L. This representation can be obtained in a simpler manner by

using the following inductive scheme: Let the label L occur in

a block b whose declared variables are v1,...,vn .

(1) If L is followed by statements S1,...,Sm, and a label M,

in that order, all within b, then

{L} ≡ {S1}({S2}(...({Sm}{M})...))

(2) If S1,S2,...,Sm are the statements following L to the end

of b, then

{L} ≡ {S1}({S2}(...({Sm}(Av1...vn:N))...)) ,

where N ≡ I, if b is the outermost block, else N is the

representation of the program part following b, that is, of the

(possibly imaginary) label immediately after the end of b.

117

According to the rules of ALGOL, the label to which a jump

can be made must be in a block which is the same as, or outer

to, the block containing the jump statement. It follows that

(the list of variables constituting) the environment of a jump

statement must contain the environment of the referred label as

a final segment. Suppose (v1,...,vn) is the environment of the

statement S ≡ goto L, and (vm,...,vn), where 1 ≤ m ≤ n, is the

environment of L, and let φ represent as usual the program

remainder of S. The execution of S causes the program to

compute the function {L}(vm,...,vn) instead of φ(v1,...,vn).

Hence, the representation of S can be taken to be the ob

Aφv1...vn: {L}vm...vn ,

or the (n+1)-interconvertible ob

 Aφv1...vm-1: {L} .

Thus, we choose:

(3-1)Representation Rule.

{goto L, where the environment of L is (vm,...,vn),

 1≤m≤n}(v1,...,vn) ≡ Aφ:(Av1...vm-1:{L}) ≡ Km {L} .

 It is sometimes convenient, specially in connection with

conditional statements, to write the right-hand side in the

alternative forms:

 Aφv1...vn:{L}vm...vn ,

 Aφv1...vn:(Av1...vm-1:{L})v1...vn .

118

Example. The representation of goto statements and labels is

illustrated by means of a complete program. The program below

has been derived from the program given in the previous example

simply by expressing the while loop in terms of goto’s. As

another application of the model, we prove the (input-output)

equivalence of the two programs.

As before, the representations of individual statements

are shown on the same line as the statement, or on the last

line for a multiple-line statement, and are designated

identifying names. The obs common to the representation of

both programs have the same names.

The label M serves to illustrate the case (1) of label

representations discussed above; it is otherwise superfluous.

begin integer x,y;

 read x; a ≡ Aφxyoi:φiyo

 y := 0; b ≡ Aφxy:φx0

 begin integer z;

 z := 0; c ≡ Aφzxy:φ0xy

L: if z=y then goto N

 else goto M; d’≡ Aφzxy:(=zy)(Az:N)Mzxy

M: y := y+2×z+l; e’≡ Aφzxy:φzx(+(+y(×2z))1)

 z := z+l; f’≡ Aφzxy:φ(+zl)xy

 goto L g’≡ Aφ:L

 end; h’≡ Aφ:c(d’(e’(f’(g’(Az:φ)))))Ω

119

N:write y j ≡ Aφxyo:φxy o,y

end k’≡ Aφ:a(b(h’(j(Axy:φ))))ΩΩ

 {program} ≡ P ≡ k’II

 L ≡ d’M

 M ≡ e’(f’(g’(Az:N)))

 N ≡ j(Axy:I)

We wish to prove that the above program and the program of

the previous example produce the same output when executed with

the same non-negative integer as the input data. That is, in

terms of their representations, we wish to show that for all

integers n ≥ 0,

 P n ↔ P’n . (i)

Of course, this can be shown by using the previously obtained

result Pn → <n
2
> in conjunction with a direct proof of the

fact that P’n → <n
2
>. But we will prove the equivalence of

the programs by verifying, in effect, that their differing

parts do the same work when the programs are executed. These

differing parts are represented by the obs h and h’. If we can

show that for all integers n ≥ 0,

 h N n 0 ↔ h’N n 0 (ii)

(where N ≡ j(Axy:I), defined in the present example), then (i)

is demonstrated as follows. From the previous example, part

(d), we know that for all n ≥ 0,

120

 Pn → h(j(Axy:I))n 0 I ≡ hNn 0 I .

But, using the definitions of the present example, we also have
 P’n ≡ k’IIn

→ a(b(h’(j(Axy:I))))ΩΩIn

→ b(h’(j(Axy:I)))nΩI

→ h’(j(Axy:I))n 0I ≡ h’Nn 0I .

Hence, it follows from (ii) that Pn ↔ P’n .

It remains to verify (ii). From (v) in the previous

example, we have for all integers n ≥ 0,

h N n 0 → N n n
2
 .

So (ii) would follow if we can also prove

 h’ N n 0 → N n n
2
 . (iii)

To outline the proof of (iii), we simply state the sequence of

reduction relations leading to it.

 N n n
2 , if i = n ,

 (1) L i n i
2
 →

L i+l n (i+1)
2 , if i ≠ n .

(2) L 0 n 0 → L i n i2, for 0 ≤ i ≤ n .

(3) L 0 n 0 → N n n2, for n ≥ 0 .

(4) h’φ n 0 → N n n2 , for n ≥ 0 .

The treatment of designational expressions and switches is

omitted, except for an example which should suffice to indicate

121

how these may be represented as obs. In the schematic program

below, b and c denote Boolean, and e and f, arithmetic

expressions. It is assumed that the omitted statements

indicated by ellipses do not contain any declarations.

begin integer x;

M: ...

begin integer y;

...

begin integer z;

switch P := N, if b then P [e] else L, M;

 ...

N: ...

begin integer w;

...

goto if c then N else P [f];

end w;

end z;

L: ...

end y

end

The representations of the switch and goto statements in

the above program are, respectively,

122

 {P } ≡ <{N},{b}(Azyx:{P}(elem {e}3)zyx)(Az:{L}),Azy:{M}>,

and

Aφwzyx:{c}(Awzy:{M})(Aw:{P}(elem {f}3)).

(Cf. Section 3.11.) Note that in the above two formulas 3, {e},

and {f} are to be natural number representations.

123

CHAPTER 5

PROCEDURES

5.1 F-procedures

We use the term F-procedure to denote a type procedure

without any side effects. In particular, an F-procedure is a

procedure in which

(1) the procedure name is typed,

(2) all parameters are called by value,

(3) no global variables are modified,

(4) no jumps are made outside the procedure body,

(5) no procedures are used other than F-procedures.

Because of the above restrictions, the representation of

F-procedures is much simpler than that of general procedures.

Since many procedures encountered in programs are truly

F-procedures, it seems useful to deal with them as a special

case.

For the moment, let us consider only the F-procedures

which do not involve global variables at all. For these, the

environment of the declaration is immaterial. Let f be an F-

procedure and p1,...,pn be its parameters. We wish to

represent f in such a manner that for all expressions e1,...,en

 {f}{e1}...{en} → {f(e1,...,en)} . (i)

124

Such a representation is accomplished as follows:

We use a variable π to denote the F-procedure value; that is,

all assignments to f are represented as if made to π.

Further, we represent the statement S constituting the body of

f by taking its environment to be (π,p1,...,pn). Now, starting

with an arbitrary value of π, and the values ei of pi , the

execution of S has the effect of assigning the value

f(e1,...,en) to π, and certain values to pi which are

irrelevant to the result; say, we have

 {S}φ π {e1}...{en} → φ {f(e1,...,en)}p1...pn . (ii)

To obtain (i) from (ii), we may initialize π with Ω, and

choose the ob Aφp1...pn:π for φ and {S}φπ for {f}. Thus we

adopt the following

(1-1) Representation Rule.

{F-procedure f(p1,...,pn) with body S}

 ≡ {S}(π,p1,...,pn)(Aπp1...pn:π)Ω

It should be pointed out that a label appearing in the

body of an F-procedure is to be represented as the part of the

F-procedure (not the program) that follows the label.

Example. The following is an F-procedure; hence (1-1) is

applicable.

125

integer procedure mod(x,y);

 value x,y; integer x,y;

begin integer q;

 q := x+y; a ≡ Aφqπxy:φ(+xy)πxy

 mod := x-y×q b ≡ Aφqπxy:φq(-x(×yq)xy

 end q; c ≡ Aφ:a(b(Aq:φ))Ω

 mod ≡ c(Aπxy:π)Ω

Example. Representation of the factorial function.

 integer procedure fact(n); value n; integer n;

 fact := if n = 0 then 1 else n × fact (n-1);

As the body of this F-procedure consists of a single assignment

statement, we have, by (3.5-1),

{body} ≡ Aφπn:φ((=n0)1(×n(fact(-n1))))n .

Hence, the representation of the F-procedure is given by the

recursively defined ob

 fact ≡ {body}(Aπn:π)Ω → An:(=n0)1(×n(fact(-nl))).

A non-recursive definition of the above ob is

 fact ≡ Y(Azn:(=n0)1(×n(z(-nl)))).

Finally, it is easy to remove the restriction about global

variables imposed earlier on functions: In case the global

variable values are used (but not, of course, modified) in an

F-procedure, we append the global variables to the actual

126

arguments as if they also were parameters in addition to the

explicitly declared parameters of the F-procedure. This is

illustrated below.

Example.

begin integer x,y; -

integer procedure f(n);

value n; integer n;

 f := n+x; a ≡ Aφπnxy:φ(+nx)nxy

... f ≡ a(Aπnxy:π)Ω

begin integer z;

 x := f(y)+z; Aφzxy:φz(+(fyxy)z)y
...

5.2 Call-by-name, Side-effects

In the previous section, we have described the SK

representation of procedures subject to rather stringent

conditions. We will now show how the representations can be

extended to more general procedures, allowing call-by-name, the

modification of global variables, and side effects. However,

we limit ourselves here to considering the formal parameters of

the type integer and label only. The extension of the model to

include real and Boolean parameters is trivial.

In ALGOL 60, a procedure call is intended to have the

effect of an appropriately modified copy of the procedure body

[27]. The modification in the case of call-by-name consists in

replacing each instance of a called-by-name formal parameter by

127

the corresponding actual parameter. (It is understood that any

name conflicts between the variables appearing in the actual

parameter expressions and the local variables of the procedure

are to be first removed by renaming the latter variables.)

Instead of performing such symbolic substitution, however,

which would require keeping procedures in text form at the

execution time, most ALGOL compilers accomplish the same effect

by treating formal parameter references in procedures as calls

on special “parameter procedures” generated from actual

parameters [30]. As a result, if an operation refers to a

formal parameter during the execution of a procedure, then the

procedure execution is suspended to evaluate the corresponding

actual parameter in the environment of the procedure calling

statement, and then the procedure execution is resumed using

the thus-acquired value in the operation. Of course, depending

upon the type and use of a parameter, the actual parameter

evaluation may yield a value (e.g., an arithmetic or Boolean

quantity when the formal parameter is an operand in an

expression) or a name (e.g., the address of a variable when the

formal parameter appears to the left of an assignment

statement). Our SK interpretation is based on a similar idea.

But we are able to avoid the notion of address, and work

exclusively with values, by making use of a number of different

“parameter procedures” for different operations performed with

the same parameter; namely, the evaluation of actual parameter

expressions, making assignments to the variables provided as

128

actual parameters, and jump to an actual label.

5.3. Integer Parameters

In the absence of procedures we were able to express each

statement in a program as a function which had for its

arguments the variable φ, denoting the program remainder (that

is, the part of the program following the statement), and the

variables constituting the environment of the statement.

Clearly the representation of a statement S in a procedure body

would involve two sets of program remainders and environments -

- namely, one set for S itself and one for the statement, say

T, that calls the procedure. The program remainder of T

corresponds to the familiar “return” address or label for the

procedure call. Now, any formal parameter instances in S give

rise to actual parameter evaluations in the environment of T,

but after the evaluation the control must eventually transfer

back to S. Hence the representation of parameter evaluation

also involves the two sets of environments and program

remainders; but this time the program remainder of S serves as

the return address. We will use the variable ρ to indicate the

program remainder at the return point and φ, as usual, for the

program remainder at the current point.

We have so far represented, and will continue to

represent, each program variable by a single indeterminate.

The representation of an assignment statement may be

129

conceived as “binding” the indeterminate representing the

variable appearing at the left-hand side to the representation

of the right-hand expression.
1
 In general, the indeterminates

representing program variables are “bound” at any time to the

current values of the corresponding program variables. With

each called-by-value formal parameter we similarly need to

associate a single indeterminate, bound to the current “value”

of the parameter at any time. However, we need to carry more

information with a called-by-name formal parameter; depending

on the type and use of a parameter we shall associate a number

of indeterminates with it. For each called-by-name formal

parameter of type integer, we require three indeterminates best

thought of as being bound, respectively, to the “value”

associated with it and to the “parameter procedures” for

evaluating it and making assignments to it. If p is an

integer parameter, then these three indeterminates will be

usually denoted by p, pε , and pα. (The parameter of type

label will be discussed later.) The environment of a statement

in a procedure body will contain the variables corresponding to

all of the above-mentioned indeterminates; specifically, it

will consist of the following in the given order:

1 The present descriptive use of “binding” and “bound” has

no connection with the terms defined at the beginning of
 Section 2.3.

130

(a) variables local to the procedure,

(b) ρ, the “return” variable,

(c) variables representing the formal parameters,

(d) variables global to the procedure.

Next, let us turn to the procedure call. Associated with

each called-by-name actual parameter p of type integer, and

individual to each procedure call, is an ob that represents the

“parameter procedure” for its evaluation. In case p is a

program variable (rather than an expression), there is also

another ob which represents the “parameter procedure” to effect

the assignments to p called for in the procedure. These obs,

referred to as “actual evaluation” and “actual assignment”

operators, are denoted ε

!

p

a
 and α

!

p

a

 , respectively, with

further distinguishing marks added when more than one procedure

call is involved.

Last, let us consider the procedure declaration.

Associated with each called-by-name formal parameter of type

integer, and unique to each environment within the procedure

body, are two obs which represent the calls on the “actual

evaluation” and “actual assignment” parameter procedures

mentioned above. For convenience, these obs are referred to as

“formal evaluation” and “formal assignment” operators, and are

usually denoted ε

!

p

f
 and α

!

p

f

 , where p is the formal parameter,

with further distinguishing marks added if more than one

environment is involved. If, in a statement in a procedure

131

body, a formal parameter appears as an operand of an

expression, the statement will be represented as if preceded by

a formal evaluation; likewise, if a formal parameter occurs at

the left-hand side of an assignment statement, that statement

will be represented as if immediately followed by a formal

assignment.

The above ideas will now be illustrated by means of a

very simple example in which the declaration and the call of a

procedure have the same environment.

begin integer y;

procedure P(x); integer x; x := x+2;

y := 1;

P(y)

end

The body of the above procedure consists of a single

statement, and that statement needs to be both preceded by a

formal evaluation and followed by a formal assignment. Thus,

it is represented by the compound

Aφ: ε

!

x

f

 (a(α

!

x

f

φ)) ≡ b ,

say, where a is the representation of x := x+2 as an ordinary

assignment statement. Since there are no local variables in

the procedure, the environment of this latter statement

consists of the following:

ρ the “return” variable,

xε the “parameter evaluation” variable,

132

xα the “parameter assignment” variable,

x the “parameter” variable, and

y the global variable .

Thus we can write

a ≡ Aφρxεxαxy: φρxεxα(+x2)y .

Now, as the variable xε is bound to the actual evaluation

operator, and the formal evaluation consists of just an

application of this ob, we define ε

!

x

f

 to be

 Aφρxεxαxy: xερφxεxαxy ,

or more simply,

 Aφρxεxαx: xερφxεxαx .

Note the interchange of φ and ρ above; this signifies that the

program remainder at the return point of procedure call becomes

the current program remainder during parameter evaluation, and

vice versa. In a similar manner, we define

 α

!

x

f

 ≡ Aφρxεxαx: xαρφxεxαx .

(In general, the global variables of the procedure need not

appear in the formal evaluation and assignment operators.)

The whole procedure may be represented by

 P ≡ b(Aρxεxαx:ρ)

which displays the effect that once the procedure execution is

over, (after the application of b), only the return variable is

retained, and the other variables, namely, the ones connected

with parameters, are deleted from the environment.

Next, let us look at the procedure call. There is only

133

one call-by-name actual parameter of type integer in this

statement. So we need to define two obs ε
a
x and α

a
x , the

actual evaluation and assignment operators. These serve

essentially as the fictitious assignment statements x:=y and

y:=x (in the environment of the procedure call), respectively,

and thus can be defined by

 ε

!

x

a
 ≡ Aφρxεxαxy: ρφxεxαyy ,

 α

!

x

a
 ≡ Aφρxεxαxy: ρφxεxαxx .

Again the interchange of φ and ρ is needed to represent the

fact that after evaluating the actual parameter in the

environment of the procedure calling statement, the control

passes back to the procedure body.
2

The purpose of the procedure calling statement itself is

three-fold:

(a) to extend the environment from (y) to (xε,xα,x,y)

(b) to initialize the added variables; that is,

substitute ε

!

x

a
 for xε, α

!

x

a
 for xα, and, by convention,

Ω for x.

2 It should not be difficult to see that coroutines can be

represented by using the same idea, as follows: the
 “remainder” of each coroutine may be represented by a

different variable. The coroutine calls are then represent-
able by the obs which simply permute these variables to
bring the remainder of the called coroutine in front. We
will soon see how we can also account for the private
variables of a coroutine by “covering” them when the control
passes out of it and “uncovering” them on return.

134

(c) to apply P before the rest of the program; that is,

substitute Pφ for φ.

Consequently, the statement P(y) above may be represented by

the ob

(Axεxαx: (Aφy: Pφxεxαxy))ε

!

x

a
α

!

x

a
Ω ,

or, more simply, by

 Aφy: P φ ε

!

x

a

 α

!

x

a

 Ω y .

Putting together the representations obtained piecemeal

above, and adding the ones for the assignment and the block, we

can now complete the representation of the program:

Example.

begin integer y;

 procedure P(x); integer x;

 ε

!

x

f

 ≡ Aφρxεxαx: xερφxεxαx

 α

!

x

f

 ≡ Aφρxεxαx: xαρφxεxαx

 x := x+2; a ≡ Aφρxεxαxy: φρxεxα(+x2)y

 b ≡ Aφ: ε

!

x

f

 (a(α

!

x

f

φ))

 P ≡ b(Aρxεxαx:ρ)

 y := 1; c ≡ Aφy: φl

 P(y) d ≡ Aφy: Pφε

!

x

a
α

!

x

a
Ωy

 ε

!

x

a
 ≡ Aφρxεxαxy: ρφxεxαyy

 α

!

x

a
 ≡ Aφρxεxαxy: ρφxεxαxx

 end e ≡ Aφ:c(d(Ay:φ))Ω

 {prog } ≡ eII

135

Next, let us consider the SK representation of type

procedures in which a value is associated with the procedure

identifier. In this case we will use an additional variable π

to denote the procedure value in representing the statements of

the procedure body. The representations are otherwise similar

to those for the untyped procedures discussed above. A

statement in which the function designator of a procedure is

used as an operand of an expression will be represented as if

it were compounded of two statements -- the first a procedure

call to obtain the value of the procedure, and the second using

that value in the expression.

The representation of a type procedure is shown in the

following example, which also illustrates the treatment of

call-by-value in our present scheme of procedure

representation. (Some explanation follows the program.)

Example.

begin integer u,v;

integer procedure P(x,y); integer x,y; value y;

 ε

!

x

f

 ≡ Aφρπxεxαxy:xερφπxεxαxy

 α

!

x

f

 ≡ Aφρπxεxαx:xαρφπxεxαxy

 begin

 P := x-y; a ≡ Aφρπxεxαxyuv:φρ(-xy)xεxαxyuv

 b ≡ Aφ:ε

!

x

f

(aφ)

 x := y c ≡ Aφρπxεxαxyuv:φρπxεxαyyuv

 d ≡ Aφ:c(α

!

x

f

φ)

136

 end compound e ≡ Aφ:b(dφ)

 end P; P ≡ e(Aρπxεxαxy:ρπ)

 u:=v:=3; f ≡ Aφuv:φ3 3

 u:=P(v,u+1) + u; g ≡ Aφuv:PφΩε

!

x

a
α

!

x

a
Ω(+ul)uv

 ε

!

x

a
 ≡ Aφρπxεxαxyuv:ρφπxεxαvyuv

 α

!

x

a
 ≡ Aφρπxεxαxyuv:ρφπxεxαxyux

 h ≡ Aφπuv:φ(+πu)v

 k ≡ Aφ:g(hφ)

end m ≡ Aφ:f(k(Auv:φ))ΩΩ
 {prog } ≡ mII

The environment of the statements in the procedure above

consists of eight variables: the return variable ρ, the

procedure value variable π, the three variables xε, xα, and x

for the called-by-name parameter x, the single called-by-value

parameter variable y, and finally the two global variables u

and v. Of these, the four parameter variables are effectively

discarded at the end of the procedure body execution by the

component (Aρπxεxαxy:ρπ) of P above. The procedure call is

represented as the compound of two statements f and g: f

computes π, the procedure value, and g makes use of this in the

assignment statement.

In both previous examples, the environment of the

procedure declaration and the procedure call are the same. In

the general case, these environments may be different; this is

so, for example, when a procedure call takes place in a block

enclosed by the block that declares the procedure. When this

137

happens, there arises the problem of “covering” the local

variables of the calling point whose scopes do not include the

procedure declaration. Of course, the covering must be such

that the variables may be “uncovered” on return to the calling

point. Notice the contrast with jumps in which the variables

that do not have valid declarations at the jump label are

simply discarded permanently. Covering is also needed in

specifying the formal evaluation and assignment operators for

use with statements inside a block in a procedure body, since

in this case, again, the variables local to the procedure body

are invisible at the calling point.

The following example shows a way of covering the

nonoverlapping parts of the environment, in order to overcome

the environment conflict problem. (See explanations below.)

Example.

begin integer x;

 procedure P(y);integer y;

 begin integer z;

 ε

!

y

f
 ≡ Aφzρyεyαy:ρyε(Aψ:ψφz)yεyαy

 α

!

y

f
 ≡ Aφzρyεyαy:ρyα(Aψ:ψφz)yεyαy

 z := y+3; a ≡ Aφzρyεyαyx:φ(+y3)ρyεyαyx

 b ≡ Aφ:ε

!

y

f
(aφ)

 end block c ≡ Aφ:b(Az:φ)Ω

138

 end P; P ≡ c(Aρyεyαy:ρI)

begin integer u;

 P(u+x); d ≡ Aφux:P(Aψ:ψφz)ε

!

y

a
ΩΩx

 ... ε

!

y

a
 ≡ Aφuρyεyαy:ρI(Aψ:ψφz)yεyα(+ux)x

end

end

In representing the procedure call in the above example,

(Aψ:ψφz) is passed as the return point argument instead of φ,

thus covering u. The application of (Aψ:ψφz) to any ob has the

effect of uncovering u and restoring the environment; e.g., in

ε

!

y

f
 the application is made to yε, and in P, to I. Note that in

the representation of the procedure call, namely, d, we have

used Ω for what would otherwise have been α

!

y

a
; this is so,

because no assignment can be made to the particular actual

parameter in this case.

The evaluation and assignment operators, both formal and

actual, have been defined above slightly differently than in

the two previous examples in which covering was not required.

These two examples are worked out once again so as to make the

treatment uniform, whether or not covering is needed in a

particular case.

139

Example.

begin integer y;

 procedure P(x); integer x;

 ε

!

x

f

 ≡ Aφρxεxαx:ρxε(Aψ:ψφ)xεxαx

 α

!

x

f

 ≡ Aφρxεxαx:ρxα(Aψ:ψφ)xεxαx

 x := x+2; a ≡ Aφρxεxαxy:φρxεxα(+x2)y

 b ≡ Aφ:ε

!

x

f

(a(α

!

x

f

φ))

 P ≡ b(Aρxεxαx:ρI)

 y := 1; c ≡ Aφy:φl

 P(y) d ≡ Aφy:P(Aψ:ψφ)ε

!

x

a
α

!

x

a
Ωy

 ε

!

x

a
 ≡ Aφρxεxαxy:ρI(Aψ:ψφ)xεxαyy

 α

!

x

a
 ≡ Aφρxεxαxy:ρI(Aψ:ψφ)xεxαxx

 end e ≡ Aφ:c(d(Ay:φ))Ω

 {prog } ≡ eII

Example.

begin integer u,v;

integer procedure P(x,y); integer x,y; value y;

 ε

!

x

f

 ≡ Aφρπxεxαxy:ρxε(Aψ:ψφ)πxεxαxy

 α

!

x

f

 ≡ Aφρπxεxαx:ρxα(Aψ:ψφ)πxεxαxy

 begin

 P := x-y; a ≡ Aφρπxεxαxyuv:φρ(-xy)xεxαxyuv

 b ≡ Aφ:ε

!

x

f

(aφ)

 x := y c ≡ Aφρπxεxαxyuv:φρπxεxαyyuv

 d ≡ Aφ:c(α

!

x

f

φ)

140

 end compound e ≡ Aφ:b(dφ)

 end P; P ≡ e(Aρπxεxαxy:ρIπ)

 u := v := 3; f ≡ Aφuv:φ3 3

 u := P(v,u+1)+u; g ≡ Aφuv:P(Aψ:ψφ)Ωε

!

x

a
α

!

x

a
Ω(+ul)uv

 ε

!

x

a
 ≡ Aφρπxεxαxyuv:ρI(Aψ:ψφ)πxεxαvyuv

 α

!

x

a
 ≡ Aφρπxεxαxyuv:ρI(Aψ:ψφ)πxεxαxyux

 h ≡ Aφπuv:φ(+πu)v

 k ≡ Aφ:g(hφ)

end l ≡ Aφ:f(k(Auv:φ))ΩΩ
 {prog } ≡ lII

For subscripted variables occurring as actual parameters,

the actual evaluation and assignment operators are again chosen

so as to represent the fictitious assignments between the

formal and actual parameter variables. But now this involves

the obs elem and replace introduced in the discussion of arrays

(Section 3.11). We will simply illustrate the representation

by means of an example. (The statements denoted by ellipses

are assumed not to contain any declarations.)

Example.

begin integer n;

 ...

begin integer array x [l:n];

procedure P(u,v); integer u,v;

141

begin

...

end P;

begin integer y;

...

P(y,x [y])

end

 end

end

For the above program, the representation of the procedure

calling statement P(y,x [y]) is the ob

 Aφyxn:P(Aψ:ψφy)ε

!

u

a
α

!

u

a
Ωε

!

v

a
α

!

v

a
Ωxn,

where

ε

!

u

a
 ≡ Aφyρuεuαuvεvαvxn:ρI(Aψ:ψφy)uεuαyvεvαvxn,

α

!

u

a
 ≡ Aφyρuεuαuvεvαvxn:ρI(Aψ:ψφu)uεuαuvεvαvxn,

ε

!

v

a
 ≡ Aφyρuεuαuvεvαvxn:ρI(Aψ:ψφy)uεuαuvεvα(x(elem yn)xn,

α

!

v

a
 ≡ Aφyρuεuαuvεvαvxn:ρI(Aψ:ψφy)uεuαuvεvαv(x(replace ynv)n.

A procedure body may contain a procedure call, possibly a

recursive one, in which the formal parameters are used in

actual parameter expressions. And the parameters of the nested

call may themselves be called by name. The representation in

such a case requires the covering of all the variables

associated with the procedure body, including the local

variables, the return variable, and the parameter variables.

142

This is illustrated below.

Example.

begin integer x;

procedure P(y,n); integer y,n; value n;

 begin

 ...

 end P;

procedure Q(z); integer z;

begin integer w;

 P(z,x);

 ...

 end Q;

 ...

 end

 If the representation of the body of the procedure P is a,

then the representation of P itself is

P ≡ a(Aρyεyαyn:ρI) .

The representation of the statement P(z,x) is

Aφ:ε

!

z

f

(bφ) ,

where ε

!

z

f

 is the formal evaluation operator for z in Q, and b

represents the call on P, as follows:

b ≡ Aφwρzεzαz x: P(Aψ:ψφwρzεzαz)ε

!

y

a
α

!

y

a
Ωx x ,

ε

!

y

a
 ≡ Aφwρzεzαz ρ1yεyαy x: ρ1I(Aψ:ψφwρzεzαz)yεyαz x ,

α

!

y

a
 ≡ Aφwρzεzαz ρ1yεyαy x: ρ1I(Aψ:ψφwρzεzαz)yεyαy x .

143

The next example illustrates the representation of a

procedure calling statement in which an actual parameter itself

consists of a call on a procedure.

Example.

begin integer x;

procedure P(r,s); integer r,s; begin ... end P;

procedure Q(t); integer t; begin ... end Q;

begin integer y;

 ...

P(x,Q(y));

end

end

 Because the second actual parameter, Q(y), in the above

procedure calling statement P(x,Q(y)) does not require an

assignment operator,
3 the latter statement is represented by

the ob

Aφyx:P(Aψ:ψφy)ε

!

r

a
α

!

r

a
Ωε

!

s

a
ΩΩx .

The first actual parameter, x, poses no problem other than the

covering of the variable y not visible to the procedure

declaration of P; hence, we define

ε

!

r

a
 ≡ Aφyρrεrαrsεsαsx:ρI(Aψ:ψφy)rεrαxsεsαsx ,

α

!

r

a
 ≡ Aφyρrεrαrsεsαsx:ρI(Aψ:ψφy)rεrαrsεsαsr .

3 As explained earlier, an assignment operator is required for

those actual parameters which consist of a single program
variable.

144

For the second actual parameter, Q(y), things are

slightly more complex. (Note, however, that only an evaluation

operator is needed in this case; the assignment operator is

undefined.) First, we have to provide for a call on Q -- which

requires covering all the variables associated with the call on

P -- with the following actual evaluation and assignment

operators:

 ε

!

t

a
 ≡ Aφyρ rεrαr sεsαs ρ1πtεtαtx:ρ1I(Aψ:ψφyρrεrαrsεsαs)πtεtαyx

 α

!

t

a
 ≡ Aφyρ rεrαr sεsαs ρ1πtεtαtx:ρ1I(Aψ:ψφtρrεrαrsεsαs)πtεtαtx

Now, ε

!

s

a
 is defined in terms of a call on Q, followed by an

assignment of the resulting value to s, as follows:

 a ≡ Aφyρ rεrαr sεsαs x:Q(Aψ:ψφyρrεrαrsεsαs)Ωε

!

t

a
α

!

t

a
Ωx ,

 b ≡ Aφyρ rεrαr sεsαs πx:ρI(Aψ:ψφy)rεrαrsεsαπx ,

 ε

!

s

a
 ≡ Aφ:a(bφ) .

145

5.4 Label parameters

The representation of label parameters is actually much

simpler than of the integer variety. The reason is that two

different operations, evaluation and assignment, are possible

with the latter type; in addition, the value of the parameter

at any time has to be carried also along within the

representation. In the case of a label parameter, the only

possible actual operation is a jump to it. Thus, with each

formal label parameter, p, we need to associate only one

variable, denoted by pγ, which is to be bound to the operator

for effecting the actual goto operation. (The variable pγ is,

of course, an element of the environment of the procedure

body.) Next, associated with each actual label parameter, and

individual to each procedure call, is an ob that represents the

parameter procedure to effect the jump to the actual label.

For a parameter p, this “actual goto” operator is denoted by

γ

!

p

a
, with further distinguishing marks added when more than one

procedure call is involved. Last, associated with each formal

label parameter, and unique to each environment within the

procedure body, is an ob, the “formal goto” operator, that

represents a call on the actual parameter procedure, that is,

an application of the actual goto operator; the formal goto

operator for the parameter p is denoted γ

!

p

f
 , again with further

distinguishing marks added if more than one environment is

involved.

 For anyone who has followed the previous treatment of jumps

146

(Section 4.3) and procedures with integer parameters (Section

5.3), the example below should suffice to explain how

to represent label parameters.

Example

 begin integer q;

procedure R(v); label v;

 goto v; a ≡ γ

!

v

f

 ≡ Aφρvγ: ρvγ(Aψ:ψφ)vγ

R ≡ a(Aρvγ:ρI)

 begin integer r;

procedure P(x,z); integer x; label z;

 ε

!

x

f

 ≡ Aφρxεxαxzγ:ρxε(Aψ:ψφ)xεxαxzγ

 α

!

x

f

 ≡ Aφρxεxαxzγ:ρxα(Aψ:ψφ)xεxαxzγ

 γ

!

z

f

 ≡ Aφρxεxαxzγ:ρzγ(Aψ:ψφ)xεxαxzγ

R(z); b ≡ Aφρxεxαxzγrq:R(Aψ:ψφρxεxαxzγr)γ

!

v

a
q

 γ

!

v

a
 ≡ Aφρxεxαxzγrρ1vγq:γ

!

z

f

φρxεxαxzγrq

begin integer s,t;

P(t,L) c ≡ Aφstrq:P(Aψ:ψφρst)ε

!

x

a
α

!

x

a
Ωγ

!

z

a
rq

ε

!

x

a
 ≡ Aφstρxεxαxzγrq:

 ρI(Aψ:ψφst)xεxαtzγrq

α

!

x

a
 ≡ Aφstρxεxαxzγrq:ρI(Aψ:ψφsx)xεxαxzγrq

γ

!

z

a
 ≡ Aφstρxεxαxzγrq: L r q

end;

L: ...

end

end

147

 CHAPTER 6

CONCLUSION

In this dissertation, we have presented a combinatory

logic (or, equivalently, lambda-calculus) model of programming

languages. Since a number of programming language models based

on the same calculi have already appeared in the literature

[5,11,16,17,18,28,31,36], a comparison of our model with others

is in order.

1. Our model does not introduce any imperative or

otherwise foreign notions to the lambda-calculus. This is in

contrast to Landin [17], in which the imperative features of

programming languages are accounted for by ad hoc extensions of

the lambda-calculus. We find that the calculus, in its purity,

suffices as a natural model of programming languages. By not

making any additions to the calculus, we have the guarantee

that all its properties, in particular, the consistency and the

Church-Rosser property, are valid in our model, For example,

even when a program requires a fixed order of execution, the

normal form obtained by evaluating the program representation

in any order, whatsoever, represents the program result

correctly.

2. In our model, programs are translated into lambda-

expressions, not interpreted by a lambda-calculus interpreter

(Reynolds [31]). Thus, programming semantics is completely

reduced to the lambda-calculus semantics, but without

148

commitment to any particular view of the latter. Also, all

lambda-expression transformations are applicable to program

representations.

3. We model assignments by the substitution operation

of the lambda-calculus. Consequently, the notions of memory,

address, and fetch and store operations do not enter our

model in any explicit manner (Stratchey [36], Reynolds [31]).

4. We represent high-level programming language

constructs directly, not in terms of the representations of

the machine level operations (Orgass-Fitch [28]) of the

compiled code.

5. Our model potentially spans the full ALGOL 60

language. It is also applicable to a number of other

advanced programming features, such as collateral statements,

the use of labels and procedures as assignable values,

coroutines, etc.

6. As a matter of opinion, it seems that our

representations are much simpler and clearer than the ones

given in other models.

We have described the model informally, and only for a

representative set of programming language constructs. But

we have provided enough motivating details and illustrations

to, hopefully, convey the method and suggest its extension to

other programming features. Our explanations, we believe,

are quite adequate for the detailed construction of an

effective procedure, say, in the form of a compiler, to

149

translate ALGOL 60 programs into lambda-expressions.

An immediate application of our model is in a functional

(as opposed to computational) semantic definition of high-level

programming languages, as the combinatory interpretations of

the individual programming constructs can themselves be taken

as the semantic specification of the constructs. Of more

interest, however, is the potential of the present model in

studying the properties of programs -- such as, convergence,

correctness, and equivalence -- and in performing useful

program transformations -- such as program simplification

(source code level) and optimization (compiled code level).

Since we describe a program as a lambda-expression or a

combinatory object, the above-described applications

essentially reduce to transformations within the respective

calculi. The possibilities of some of these applications have

been indicated by examples. In the case of loop-free programs,

these applications most often involve straightforward lambda-

calculus reduction. For the programs containing loops, our

proofs of correctness and equivalence are rather ad hoc; the

development of systematic methods to deal with these

applications warrants further research.

150

REFERENCES

1. Abdali, S. K., A simple lambda-calculus model of

programming languages, AEC R & D Report cOO-3077-28,

Courant Inst. Math. Sci., New York Univ. (July 1973).

2. deBakker, J. W., Formal Definition of Programming

Languages, Mathematisch Centrum, Amsterdam (1967).

3. ______________, Recursive Procedures, Mathematical Center,

 Amsterdam (1972).

4. Böhm, C., The CUCH as a formal and description language,

in Formal Language Description Languages ed. Steel, T.

B.)., North-Holland, Amsterdam (1966), 179—197.

5. Burstall, R. M., Semantics of assignment, in Machine

Intelligence 2 (ed. Dale, E., and Michie, D.), Oliver and

Boyd, Edinburgh (1967), 3-20.

6. _______________, Formal description of program structure

and semantics in first-order logic, in Machine

Intelligence 5 (ed. Meltzer, B., and Michie, D.),

Edinburgh Univ. Press, Edinburgh (1970), 79-98.

7. Cadiou, J. M. and Manna, Z., Recursive definition of

partial functions and their computations, SIGPLAN Notices

7, 1 (Jan. 1972), 58—65.

8. Church, A., The Calculi of Lambda-Conversion, Princeton

Univ. Press, Princeton, N. J. (1941).

151

9. Curry, H. B., and Feys, R., Combinatory Logic, Vol. I,

North-Holland, Amsterdam (1956).

10. Floyd, R. W., Assigning meanings to programs, Proc. Symp.

in Appl. Math., Amer. Math. Soc. 19 (1967), 19—32.

11. Henderson, P., Derived semantics for programming

languages, Comm. ACM 15, 11 (Nov. 1972), 967—973.

12. Hoare, C. A. R., An axiomatic basis for computer

programming, Comm. ACM 12, 10 (Oct. 1969), 576—580,583.

13. Igarashi, S., On the equivalence of programs represented

by ALGOL-like statements, Report of Computer Center, Univ.

of Tokyo 1, 1 (1968), 103-118.

14. Kleene, S. C., Introduction to Metamathematics, van

Nostrand, Princeton, N. J. (1950).

15. Knuth, D. E., Examples of formal semantics, in Symp. on

Semantics of Algorithmic Languages (ed. Engeler, E.),

Springer-Verlag (1971), 212—235.

16. Landin, P. J., The mechanical evaluation of expressions,

Computer J. 6, 4 (Jan. 1964), 308—322.

17. _______________, A correspondence between ALGOL 60 and

Church’s lambda-notation, Comm. ACM 8, 2-3 (Feb., Mar.

1965), 89—101, 158—165.

18. Ledgard, H. F., A model of type-checking, Comm. ACM 15, 11

(Nov. 1972) 956—966.

152

19. Lee, J. A. N., Computer Semantics, van Nostrand Reinhold,

New York (1972).

20. London, R. L., The current state of proving programs

correct, Proc. ACM Annual Conf. (Aug. 1972), 39-46.

21. Lucas, P., Lauer, P., and Stigleitner, H., Method and

notation for the formal definition of programming

languages, Report TR 25.087, IBM Laboratory, Vienna

(1968).

22. Manna, Z., and Vuillemin, J., Fixpoint approach to the

theory of computation, Comm. ACM 15, 7 (July 1972), 528—

536.

23. McCarthy, J., A basis for a mathematical theory of

programming, in Computer Programming and Formal Systems

(ed. Braffort, P., and Hirshberg, D.), North-Holland,

Amsterdam, (1963), 33—70.

24. McGowan, C., Correctness results for lambda-calculus

interpreters, Ph.D. thesis, Comp. Sci. Dept., Cornell

Univ. (1971).

25. Milner, R., Implementation and application of Scott’s

logic for computable functions, SIGPLAN Notices 7, 1

(Jan. 1972), 1—6.

26. Morris, J. H., Lambda-calculus models of programming

languages, Ph.D. thesis, Project MAC, MIT, MAC-TR-57

(Dec. 1968).

27. Naur, P. et al., Revised report on the algorithmic

language ALGOL 60, Comm. ACM 6, 1 (Jan. 1963), 1-17.

153

28. Orgass, R. J., and Fitch, F. B, A theory of programming

languages, Studium Generale 22 (1969), 113—136.

29. Petznick, G. W., Combinatory programming, Ph.D. thesis,

Comp. Sci. Dept., Univ. of Wisconsin, Madison (1970).

30, Randell, B., and Russel, L. J., ALGOL 60 Implementation,

Academic Press, New York (1964).

31. Reynolds, J. C., Definitional interpreters for higher-

order programming languages, Proc. ACM Annual Conf. (Aug.

1972), 717—740.

32. Rosen, B. K., Tree-manipulating systems and Church-Rosser

theorems, J. ACM 20, 1 (Jan. 1973), 160—187.

33. Rosser, 3. B., Deux Esquisses de Logigue, Gauthiers-

Villars, Paris (1955).

34. Schönfinkel, M., Über die Bausteine der Mathematischen

Logik, Mathematische Annallen 92 (1924), 305-316.

35. Scott, D., Lattice theory, data types, and semantics, in

Formal Semantics of Programming Languages (ed. Rustin,

R.), Prentice-Hall, New Jersey (1972), 65—106.

36. Stratchey, C., Towards a formal semantics, in Formal

Language Description Languages (ed. Steel, T.B.), North-

Holland, Amsterdam (1966), 198-220.

154

37. Wegner, P., Programming Languages, Information Structures,

and Machine Organization, McGraw-Hill, New York (1968).

38. van Wijngaarden, et al., Report on the algorithmic

language ALGOL 68, Numerische Math. 14 (1969), 79—218.

