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A simple correspondence is presented between a large 

subset of the ALGOL 60 language and the combinatory logic.  

With the aid of this correspondence, a program can be 

translated into a single combinatory object.  The 

combinatory object representing a program is specified, in 

general, by means of a system of reduction relations among 

the representations of the program constituents.  This 

object denotes, in terms of the combinatory logic, the 

function that the program is intended to compute. 

The model has been derived by using intuitive, 

functional interpretations of the constructs of programming 

languages, completely avoiding the notions of machine 

command and address.  In particular, the concepts of program 

variable, assignment, and procedure have been accounted for 

in terms of the concepts of mathematical variable, 

substitution, and function, respectively. 

High-level programming language features are represented 

in the combinatory logic directly, not in terms of the 

representations of machine-level operations.  Input-output is 

treated in such a manner that when the representation of a 
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program is applied to the representations of the input items, 

the resulting combination reduces to a tuple of the 

representations of the output items. 

 
The applicability of the model to the problems of 

proving program equivalence and correctness is illustrated  

by means of examples. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
1.1 Preliminary Remarks 
 

Before we can model programming languages, we have to be 

definite about what is to be regarded as the meaning of a 

program.  In our view, the meaning of a program is a function.  

A program prescribes the computational steps which produce the 

value of some function corresponding to a given value of the 

function argument.  It is precisely the function intended to be 

computed by a program that we take to be the meaning of the 

program.  Consequently, in order to model programming languages 

mathematically, we seek to formulate rules for deriving the 

mathematical definitions of functions from the computational 

representations of functions provided in the form of programs. 

The problem of obtaining the mathematical definition of a 

function from the text of a program computing that function is 

quite non-trivial.  To describe computations, programming 

languages make use of a number of concepts that are not present 

in the customary mathematical notations for representing 

functions.  Central to the present-day programming languages -- 

and the main source of difference between the diction of 

mathematics and that of programming languages -- is the notion 

of a computer memory.  Consider, for example, the concept of 

program variable.  Whereas a mathematical variable denotes a 
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value, a program variable denotes an address in the computer 

memory.  Or, compare the notion of substitution used in the 

functional calculi with the notion of assignment used in 

programming languages.  Again, whereas the former is concerned 

with values, the latter is concerned with addresses.  

Similarly, the notion of function used in mathematics is 

radically different from the notion of procedure used in 

programming languages; the evaluation of functions requires 

straightforward substitution of the argument values in the 

functional definitions, while the execution of procedures 

requires rather elaborate manipulation of information involving 

a complex of memory locations. 

For a long time now, two types of constituents have been 

distinguished in programming languages [17] -- the descriptive 

elements, such as expressions and functions, and the imperative 

elements, such as assignments, instruction sequencing, and 

jumps.  In addition, high-level programming languages also 

contain declarative elements, such as type, array, and block 

declarations, and name and value specifications for procedure 

parameters.  Although the descriptive and the declarative 

elements are often lumped together [17,36], we feel that these 

two classes should be recognized as quite distinct; while the 

purpose of the former is mainly to designate values, the 

purpose of the latter is to remove ambiguities and to impose 

structure on program and data.  Indeed, the declarative 

features often serve to interconnect the descriptive and the 
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imperative components of a program. 

The imperative constituents have their origin in machine 

languages from which the present-day high-level programming 

languages have evolved.  The descriptive constituents have been 

introduced for ease and conciseness of notation, as well as for 

making the programs resemble more closely the functions they 

compute.  The addition of such constituents to programming 

languages thus represents a step away from the machine and 

towards mathematics.  The declarative constituents have been 

added for, ostensibly, improving the clarity and transparency 

of programs.  But in actual fact, by introducing sophisticated 

address-related concepts, most declarative features represent a 

step back to the machine, and their presence often makes the 

recognition and extraction of the functional meaning of a 

program more difficult than would be in their absence. 

The descriptive features of programming languages lend 

themselves to mathematical interpretation in quite a natural 

manner.  It is the presence of imperative and declarative 

features that obscures the functional meaning of a program.  

And the essence of that obscurity is in the dependence of these 

features upon the concept of computer memory. 

Thus, the key to the extraction of functional meaning of 

programs lies in modelling programming constructs without using 

the idea of memory address.  This is the task that we undertake 

to do in the present dissertation.  In particular, we seek to 

explain program variables in terms of mathematical variables, 
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the operation of assignment in terms of substitution, and 

procedures, programs, and, in general, all program statements 

in terms of functions. 

To express programming constructs, we make use of the 

notation and terminology of ALGOL 60 [27], with a few, 

explicitly stated, extensions.  As the mathematical theory for 

modelling the programming constructs, we make use of the 

combinatory logic [8,9,33,34], originated by Schönfinkel and 

developed principally by Curry.  A remarkable feature of this 

theory is the absence of variables.  Nevertheless, functions 

can be represented by the objects of this theory in a natural 

manner.  Thus, by using the combinatory interpretation of 

programming languages, we seek to eliminate variables 

altogether, program-related or mathematical. 
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1.2 Background 

A number of combinatory logic (or, related, lambda-

calculus) models of programming languages have appeared in the 

literature.  The most well known of these are due to Landin.  

In [16], Landin uses the lambda-calculus to model the semantics 

of expression evaluation in programming languages.  He also 

prescribes the semantics of the lambda-calculus itself by means 

of an interpreter, the SECD machine, to evaluate lambda-

expressions.  But in extending his model to include the 

imperative features of ALGOL 60, he elects [17] to supplement 

the lambda-calculus and its evaluator with such concepts as the 

assigner, the jump operator, and sharing.  Due to their 

pioneering nature and their thoroughness of analysis, Landin’s 

papers have greatly influenced the subsequent work on 

programming semantics.  But they have also been instrumental in 

creating the rather unfair impression that the pure lambda-

calculus is not an appropriate medium for representing the 

imperative notions of programming languages (see for example 

[2]). 

The direct superimposition of imperative concepts on the 

lambda-calculus seems to us unsuitable on several grounds.  

First of all, there is no guarantee of the preservation of 

consistency in the augmented calculus.  Then, by defining the 

new calculus in terms of the sequentially operating “sharing 

machine”, one throws away the most important property of the 

lambda-calculus, the Church-Rosser property [9], which implies 
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that the values of lambda-expressions are independent of their 

evaluators.  Finally, the resulting model of programming 

languages forces one to identify a program with its execution 

trace; it fails in capturing the abstract function underlying 

the computation expressed in the program. 

Stratchey [36] also uses the lambda-calculus to model 

programming language semantics.  Unlike Landin, he under-takes 

to represent the imperative as well as the declarative and 

descriptive notions of programming languages in terms of the 

descriptive concepts of the lambda-calculus.  To account for 

the notion of assignment, however, he postulates a number of 

primitives to represent the generalized concepts of address and 

the related memory fetch and store operations.  Thus, by not 

going as far as to eliminate program variables in favor of 

mathematical variables, Stratchey’s model is again 

computational rather than functional.  As Burstall points out 

in describing another lambda-calculus model [5] of programming, 

it is unnecessary to introduce any assignment-related concepts 

as primitives.  Indeed, Burstall shows how assignments can be 

naturally modelled by the lambda-calculus operation of 

substitution.  We remark that our approach is closest to 

Burstall’s in spirit, though we adopt a different method of 

representing assignments. 

Orgass and Fitch [28] have developed a theory of 

programming languages in a system of the combinatory logic.  

They represent the computer memory as an n-tuple and the 
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machine state transitions caused by the execution of 

instructions as functions on n-tuples.  Their representation of 

programming languages is in rather general terms, and it is not 

clear how it can be used to obtain the representation of 

specific programs.  The main drawback in their model seems to 

be the lack of treatment of declarative features, so that their 

discussion of programming languages is applicable, for the most 

part, to machine-level languages only. 

A number of researchers have used the combinatory logic or 

the lambda-calculus to model only some important programming 

constructs rather than full-fledged programming languages.  In 

[26], Morris explores the concepts of recursion and types in 

the lambda-calculus, but his work is also relevant to these 

concepts as they occur in programs.  Ledgard [18] describes a 

model of type checking in which lambda-expressions are used to 

abstract out the type relations within a program.  In addition, 

we mention the work of Böhm [4], Petznick [29], Milner [25] and 

Henderson [11], who obtain the representations of various 

elementary programming constructs and schematic programs in the 

combinatory logic or the lambda-calculus. 

The semantics of the lambda-calculus itself has attracted 

considerable attention.  We have already mentioned Morris’ 

results on recursion and types [26] and Landin’s SECD machine 

[16] for evaluating lambda-expressions.  The formal 

specification of several lambda-calculus interpreters 

(originally due to Wegner [37]), and proofs of their mutual 
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equivalence have been given by McGowan [24].  The Wegner-  

McGowan and Landin machines employ the so-called “call-by- 

value” strategy of evaluating the right component of an 

application before the left one.  Consequently, none of these 

machines is a true normal-form reducer for lambda-expressions.  

A computer to reduce the objects of the combinatory calculus to 

their normal forms has been designed and proved correct by 

Petznick [29].  This computer consists of stack-structured 

control registers and tree-structured memory, permits shared 

memory representations of equiform objects, and has provisions 

for incremental programming and multiple processing.  Reynolds 

[31] defines and interrelates a number of interpreters for the 

lambda-calculus and for its various extensions with programming 

language features. 

Knuth [15] approaches the semantics of the lambda- 

calculus from the viewpoint of his general theory of the 

semantics of context-free languages, in which the meanings of 

sentences are built up, in the course of sentence generation, 

from the attributes associated with non-terminal symbols.  

Finally, the most abstract and incisive work on the semantics 

of the lambda-calculus has been done by Scott (e.g., [35]) as 

part of a very general theory of computation.  Concerned with 

an abstract or functional explanation rather than with a 

computational explanation, Scott represents a lambda- 

expression as the limit of a certain sequence of constructions 

on complete lattices.  His theory succeeds in providing very 
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convincing answers to the problems related to recursion and 

self-application in the lambda-calculus. 

Combinatory models constitute but a minute fraction of the 

total work that has been done so far on the semantics of 

programming languages.  We mention just a few of the other 

models.  In [10], Floyd suggests the method of semantic 

definition of programming language statements by means of pairs 

of conditions that hold just before and after the statement 

execution.  Apparently, little use has been made of Floyd’s 

method in the definition of programming languages.  But his 

idea of representing the effect of execution of program 

statements by assertions has had diverse and far-reaching 

consequences.  (For example, it serves as the basis of most 

program proving schemes [20]).  Of all the methods of defining 

programming languages, the most elaborate and the most 

extensively applied is the “Vienna Method” [19,21] -- so called 

because it was developed at the IBM Vienna Laboratory for the 

semantic specification of the PL/l language.  In this method, 

programming constructs are represented in terms of the (non-

deterministic) state transitions of a machine; it thus 

constitutes a computational, rather than a functional, approach 

to semantics. 

Among the purely functional semantic models of programming 

languages based on theories other than the combinatory logic, 

the most notable are: Burstall’s [6] representation of programs 

by combining the Floyd-type assertions associated with the 
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programs into the formulas of first-order predicate calculus; 

and Manna and Vuillemin’s [22] Scott-theoretical interpretation 

of programming constructs as minimal fixed points of “recursive 

programs”. 

To conclude, we mention the axiomatic approach to 

programming semantics, which is different from both functional 

and computational approaches.  It consists in devising the 

systems of axioms and inference rules which apply directly to 

programming language constructs, and in which the properties of 

programs may be derivable as theorems.  This approach obviates 

the circuitousness involved in deriving the same properties when 

one uses a “programming model” (in which case, one first 

represents programs as the objects of some mathematical theory, 

and then works with these representations to derive the 

properties).  Igarashi [13] and deBakker [2] are the first to 

propose sets of axioms dealing with elementary programming 

constructs; their systems are, however, rather complex.  A very 

simple and elegant axiom system (in which Floyd’s ideas again 

find a new expression) has recently been presented by Hoare [12].
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CHAPTER 2 

 
 

THE COMBINATORY LOGIC 
 
 

This chapter summarizes the properties of the combinatory 

logic [8,9,33,34] which will be utilized later in the modelling 

of programming languages.  The discussion is in terms of a 

particular system SK consisting of only two primitive objects 

(S and K), a primitive operation (combination) to form new 

objects from given ones, and two primitive relations (S- and K-

contractions) between objects. 

 
2.1 Morphology and Transformation Rules 

The alphabet for SK consists of the symbols “S”, “K”, “(”, 

and “)”.  As there is no possibility of confusion, we let “S” 

and “K” also denote the words consisting solely of S and K, 

respectively.  If a and b denote words over the alphabet, then 

we denote by “(ab)” the word obtained by concatenating the 

symbol “(”, the word a, the word b, and the symbol “)”.  Of all 

the words over the SK alphabet, we distinguish certain words by 

means of the 

(1-1) Definition.   The (combinatory) obs are formed according 

to the following rules: 

 
(1) S and K are obs. 

 
(2) If a and b are obs, then (ab) is an ob. 
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(3) The only obs are those specified by (1) and (2). 

S and K are primitive obs; any other ob, which is 

necessarily of the form (ab), is a composite ob.  The composite 

ob (ab) is the application of a to b, or the combination of a 

and b, the obs a and b being its left and right immediate 

components, respectively.  It follows that the immediate 

components of an ob are uniquely determined and are non-

overlapping.  A component of an ob is either the ob itself or a 

component of an immediate component of the ob.  A proper 

component of an ob is a component which is not the ob itself.  

The length of an ob is the number of symbols  S  and  K  in it. 

 

Example.  The application of the ob ((KS)((SS)K)) to K is the 

composite ob (((KS)((SS)K))K) of length 6, some of whose proper 

components are K, S, (KS), and ((SS)K).  The same ob S has 

three different occurrences as components of the above ob; all 

these occurrences are to be regarded as different components. 

We use the notation a ≡ b to indicate that the obs a and b 

are equiform, that is, spelt the same over the SK alphabet.  We 

also use this notation for introducing a as a new name for the 

ob b.  We may abbreviate obs by omitting parentheses under the 

convention that any omitted parentheses are to be re-inserted 

by association to the left.  For example, ((SS)(SK)) maybe 

abbreviated to (SS)(SK) or SS (SK). 

      

     We now state a number of rules for transforming obs. 
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(1-2) Definition.  For all obs a, b, and c: 

 

(1) The ob Sabc S-contracts to the ob ac(bc); in symbols, 

Sabc →S ac(bc). 

(2) The ob Kab K-contracts to the ob a; in symbols,  

 Kab →K a. 

 

If a →S b, then a and b are called, respectively, the S-redex 

and S-contractum corresponding to each other.  K-redex and 
 
K-contractum are defined analogously.  A redex is either an 

S-redex or a K-redex. 

Let an ob b be obtained from an ob a by replacing a 

component c of a by an ob d.  If it is the case that c →S d or 

c →K d, then a immediately reduces to b (in symbols, a →im b).  

For example, K(SKSa)Sb →im SKSab, and also K(SKSa)Sb →im 

K(Ka(Sa))Sb, depending on the redex selected for contraction. 

(1-3) Definition.  An ob a is irreducible or in normal form if 

there is no ob b such that a →im b. 

Thus, no component of an irreducible ob may be a redex.  

Some examples of irreducible obs are S, K, KS, SKK, and 

SS(S(SSK)K). 

(1-4) Definition.   An ob a reduces to an ob b, denoted a → b, 

if there exist obs a0, a1,..., an, for some n > 0, such that 

(1)  a ≡ a0 , 

(2) b ≡ an ,  
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(3) ai →im ai+1 , for 0 ≤ i < n . 

Example.  SKSKSKabc → ac(bc), since 
 

SKSKSKabc →im KK(SK)SKabc →im KSKabc →im Sabc →im ac(bc). 

If a →S b, then we also say that b S-expands to a, and 

write b ←S a.  In a similar manner, we define 

K-expansion (←K), immediate expansion (←im), and expansion 

(←). 

(1-5) Definition.  An ob a is interconvertible with an ob b, 

denoted a ↔ b, if there exist obs a0,a1,...,an, for some  

n > 0, such that  

(1) a ≡ a0 , 
 

(2) b ≡ an , 
 

(3) ai →im ai+1 or ai
 ←im ai+1 , for 0 ≤ i < n. 

 

Example.  SKKa ↔ SSSSKa, since SKKa →im Ka(Ka) →im a 
 

←im Ka(SSKa) ←im SK(SSK)a ←im SS(SS)Ka ←im SSSSKa. 
  
Reduction (→) and interconvertibility (↔) are related 

by the well-known 
 
(1-7) Theorem (Church-Rosser) [9]. If a ↔ b, then there 

exists an ob c such that a → c and b → c. 

 
(1-8) Corollary. If the obs a and b are irreducible, 
 
then a ↔ b if and only if a ≡ b. 

(1-9) Definition.  A normal form of an ob a is an irreducible 

ob b, if one exists, such that  a ↔ b.  An ob is normal  
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if it has a normal form.  

From Theorem 1-7 and Corollary 1-8, it immediately 

follows that: 

(1-10) Theorem.  If an ob is normal, then its normal form is 

unique.  Moreover, if b is the normal form of a, then a → b. 

That is, it is possible to discover the normal form of a 

normal ob by a sequence of contractions alone, starting from 

the given ob.  Of course, there are obs that are not normal.  

An example of such an ob is (aaa), where a ≡ SSK.  It is easily 

seen that all possible reductions of the ob (aaa) either keep 

producing longer and longer obs or eventually lead to (aaa) 

again, so that they will continue indefinitely without ever 

reaching an irreducible form.  Moreover, there are obs that are 

normal but for which not every reduction terminates in a normal 

form.  This is illustrated by the ob KS(aaa), with a defined as 

above; its normal form S cannot be reached as long as 

reductions are carried out only inside the component (aaa).  

Fortunately, there exists a deterministic reduction procedure 

such that, when applied to normal obs, it always arrives at 

their normal forms in a finite number of steps.  It is as 

follows: 

(1-11) Standard Order Reduction Algorithm (Church-Rosser).  [9) 

To obtain the normal form of a normal ob, start with the ob and 

successively apply contractions of the leftmost redex, until no 

further reduction is possible. 

A modification of the above scheme is used in Petznick’s 
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combinatory computer [29], a hypothetical machine for reducing 

obs to normal form.  Obs may be so represented in the memory of 

this machine that all equiform components of an ob may have but 

one internal representation.  The reduction takes place by 

contracting the leftmost redex; but as a consequence of shared 

representations, several equiform redexes may be contracted 

simultaneously. 

On account of Definition 1-9 and Theorem 1-10, it seems 

reasonable to regard the normal form of an ob as the “value” of 

the ob, and the process of normal form reduction as 

“evaluation”.  Consequently, we may regard mutually 

interconvertible normal obs as “equal” since they have the same 

value.  This view of value and equality is similar to the one 

taken in other calculi.  For example, among the equal 

arithmetic expressions 2x2+3x4, 4+12, and 16, the last one is 

distinguished in being “irreducible” by the rules of 

arithmetic, and thus it is regarded as the value of the three 

expressions.  For obs as well as for arithmetic expressions, it 

so happens that the value is obtainable by a sequence of 

reductions only, and it is unique despite the possible 

nondeterminism involved in the order of reductions.  But unlike 

the case for arithmetical expressions, there is no algorithm to 

decide whether or not two given obs have the same value (i.e., 

are interconvertible). 

The notion of interconvertibility is generalized in the 
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following 
 

(1-12) Definition.  An ob a is n-interconvertible to an 
 

ob b, in symbols a ↔n b if for all obs c1,...,cn , 
 

acl...cn
 ↔ bc1...cn 

 

 Clearly, a ↔n b implies a ↔m b for all m > n; but 
 

the converse does not hold.  For example, we have SKS ↔1 SKK,
   

since SKSc → c ← SKKC for all c.  Yet SKS ¬↔0 SKK (i.e., 

SKS ¬↔ SKK) by Corollary 1-8, as the two obs are irreducible 

but not equiform.  Indeed, it can easily be shown that for a 

given normal ob a and an integer n ≥ 1, there exist infinitely 

many obs b with distinct normal forms such that a ↔n b but, 

for all m < n, a ¬↔m b. 
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2.2 Functional Abstraction 

Our interest in SK derives from the fact that we can 

represent programming language constructs (e.g., expressions, 

statements, programs) by obs, and the processes required in the 

execution of programs (e.g., substitution, expression 

evaluation, procedure application) by the reduction operation.  

Such a representation is possible because 

1. Programming constructs can be regarded intuitively as 

functions (in a special sense of the word, explained 

below), and 

2. Functions can be represented by obs. 

This section will describe how to represent functions as obs.  

We will assume that a function F is defined by means of a 

functional equation of the form 
 

F(x1,...,xn) = E 
 

in which E is an expression that may contain constants, 

variables, and already defined functions.  The variables 

x1,...,xn are called the formal arguments of the function F.  

To obtain the value of this function for a list of expressions 

given as actual arguments, the actual arguments are substituted 

in place of the corresponding formal arguments, and the 

resulting expression is evaluated. 

Confined for the moment to the functions of one argument 

only, our basic approach to the SK representation of functions 

may be stated as follows: Let F be a given set of  
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one-argument functions to be represented, and let A be the 

union of the domains and ranges of the given functions.  Then 

we choose obs to represent the members of F and A so as to 

satisfy the following condition.  For all F in F and a,b in A, 

and their respective SK representations F, a, b, if F(a) = b, 

then (F a) → b. 

 

The above representation applies as such to one-argument 

functions only.  But a basic idea of the combinatory calculus, 

due to Schönfinkel [34], is to regard even the functions of 

several arguments as just one-argument functions.  This becomes 

possible if the domains and ranges of one-argument functions 

are permitted to contain one-argument functions themselves.  To 

see how this idea works, suppose F is a function of two 

arguments, and let Gx (for a given x) and H be one-argument 

functions such that 

Gx(y) = F(x,y)   , 
 

 H(x) = Gx       . 

 

Then for any arguments a and b, we have 
 

F(a,b) = Ga(b) = [H(a)](b) 

Now F is identified with the one-argument function H, and, 

consequently, F(a,b) with [H(a)](b).  Hence, designating the 

representative obs by underlining the names of the represented 

functions or constants, we may choose F = H, thereby 
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representing  F(a,b)  by  ((H a)b), i.e., (F a b).  Note that 

(F a) represents H(a), i.e.  the function Ga . In general, if F 

is a function of n arguments, then: 

 

(F a1...am) for m < n represents the function G such  
 

that G(xm+1,...,xn) = F(a1,...,am,xm+1,...,xn) , and 
 

(F a1...an) represents F(a1,...,an). 
   

With the above interpretation of functions in mind, every 

expression involving only functions and constants but not 

variables, written in the customary functional notation using 

function application and composition, is representable in SK, 

provided that its constituent functions and constants are 

representable.  For example, we may represent the expression 

F(G(a,b),H(J(c),d)) by the ob F(G a b)(H(J c)d), and carry out 

the evaluation of the former entirely within SK by reducing the 

latter.  But in order to extend our representation to the 

expressions involving variables also, we require a 

generalization of obs described next. 

We adjoin a denumerable collection of symbols called 

indeterminates to the alphabet of SK.  We do not specify these 

symbols; but it will always be possible to infer from the 

context whether or not a symbol is an indeterminate.  Of all 

the words over the augmented SK alphabet, we characterize an ob 

form to be a word that either consists of a single 

indeterminate or S or K, or is of the form (e1 e2), 
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where e1 and e2 are ob forms (Cf. Definition 1-1).  All 

the definitions, notational conventions, and properties related 

to obs, as given in the previous section, generalize in an 

obvious manner for ob forms. 

Given an ob form e and an indeterminate x, we say that e 

contains x, or x occurs in e, in symbols, x oc e, if x is a 

component of e; x oc/  e if it is not the case that x oc e. 

 

(2-1) Definition.  Let e,f1,...,fn be ob forms and x1,...,xn be 

distinct indeterminates.  Then the result of (simultaneous) 

substitution of f1 for x1, f2 for x2 ,..., fn for xn in e, 

denoted  

sub [f1,x1;...;fn,xn;e] 
 

is defined by induction on n and the structure of e as follows: 

 

(1) sub [f1,x1;e] 

   e , if x1 oc/  e, 

            ≡   f1 , if e ≡ x1 

  (sub [f1,x1;g]sub [f1,x1;h]), 
                         otherwise, where e ≡ (gh). 
 
 

(2) sub [f1,x1;f2,x2;...;fn+1,xn+1;e] 
 

≡ sub [f1,z; sub [f2,x2;...;fn+1,xn+1;sub [z,x1;e]]] 

where z is an indeterminate which is distinct from 

each of x1,...xn and which does not occur in any 
 

of e, f1, ..., fn . 
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As a consequence of the definitions of reduction and 

substitution, we have  

(2-2) Lemma.  If e → e’, then  

 

sub [f1,x1;...;fn,xn;e] → sub [f1,x1;...;fn,xn;e’]. 

 

(2-3) Definition.  Given an ob form e and indeterminates 

x1,...,xn, for some n ≥ 1, an abstract of e with respect to 

x1,...,xn is an ob form f such that  
 

 (1) xi oc/ f , l ≤ i ≤ n , 

 (2) fx1...xn  → e.   

Example.  For e ≡ xyz(y(xy)z), we have 
 
 e ← S(xy)(y(xy))z ← SSy(xy)z  ← S(SS)xyz . 
 

Hence, the ob S(SS) is an abstract of e with respect to x,y,z; 

the ob forms S(SS)xy, SSy(xy), and S(xy)(y(xy)) are all 

abstracts of e with respect to z.   

Let f be an abstract of an ob form e with respect to the 

indeterminates x1,...,xn.  The relations (1) and (2) of the 

above definition are satisfied.  Applying Lemma 2-2 to (2), we 

have for all ob forms g1,...,gn ,  

sub [g1,x1;...;gn,xn;fx1...xn] → sub [g1,x1;...;gn,xn;e].   

Because of (1), we can simplify the left-hand side in the 

above relation and restate the relation as follows:  

If f is an abstract of e with respect to x1,...,xn, then for 
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all ob forms g1,...,gn, we have  
 

        f g1...gn → sub [g1,x1;...;gn,xn;e].    (*) 
 

Further properties of abstracts will be described later.   

   Earlier in this section, we have noted how the expressions 

that contain already represented constants and functions can be 

represented by obs.  With variables represented by 

indeterminates (possibly, with the same symbolic denotation), 

we can extend that scheme to represent by ob forms the 

expressions that contain variables in addition to constants and 

functions.  Now consider a function F defined by the functional 

equation  

 

F(x1,...,xn) = E , 
 

in which E is an expression containing constants, variables, 

and already defined functions.  The value of F for given actual 

arguments G1,...,Gn is computed by simultaneously replacing x1 

with G1, ..., xn with Gn in E, and then evaluating the resulting 

expression.  Let e, g1,...,gn be the ob forms representing the 

expressions E, G1,...,Gn, respectively.  Then we would like to 

represent the function F by an ob form (or, if possible, by an 

ob
1
) f satisfying  

 

 
1  It will soon become clear that if, in the functional 

equation F(x1,...,xn) = E defining F, the expression E does 
not involve any variable other than x1,...,xn, then F is 
representable by an ob. 
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the relation  

 

fg1...gn → sub [g1,x1;...;gn,xn;e] 
 

Furthermore, the above relation must hold for all choices of ob 

forms g1,...,gn.  But we have just seen that this is precisely 

the case if f is an abstract of e with respect to x1,...,xn.  

Hence, given a functional equation defining a function, any 

abstract of the ob form representing the right-hand expression 

in the equation with respect to the formal arguments can be 

taken as the SK representation of that function. 

From the property (*) of abstracts obtained earlier, it 

follows that all abstracts of the same ob form with respect to 

the same n indeterminates are mutually n-interconvertible 

(Definition 1-12).  Also, an ob form which is n-

interconvertible to an abstract of a given ob form with respect 

to n given indeterminates is itself one such abstract. 

To designate an arbitrarily chosen abstract of the ob form 

e with respect to the indeterminates x1,...,xn , we employ the 

notation (A
a
x1...xn:e).  This notation may be abbreviated by 

omitting parentheses under the convention that the ob form to 

the right of the colon sign extends as far to the right as is 

consistent with its being well formed.  For instance, we may 

abbreviate (A
a
xy:(A

a
z:(x(xy)z)) to  A

a
xy:A

a
z:x(xy)z.  We state 

below some important properties of abstracts, including (*) for 

completeness; some simple arguments pertaining to the 
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substitution process suffice to establish these properties:  

 

(2-4) Theorem.  Let e, e’, g1,...,gn be ob forms and x1,...,xn 

distinct indeterminates for some integer n ≥ 1. 

Then: 

 (1) (A
a
x1...xn:e) g1...gn → sub [g1,x1;...;gn,xn;e]. 

 (2) If y1,...,yn are distinct indeterminates and 

  yi oc/  e  for 1 ≤ i ≤ n, then 

  A
a
x1...xn:e ↔n A

a
y1...yn:sub [y1,x1;...;yn,xn;e]. 

 (3) a) If x oc/  e for all 1 ≤ i ≤ n, then 

   A
a
x1...xn:ex1...xn ↔n e. 

b) Generally, for an integer  m ≤ n, if xi oc/ e for 

m ≤ i ≤ n, then 

   A
a
x1...xn:exm...xm ↔n A

a
xl...xm-l:e. 

(We consider the right-hand side to be simply e when 

m = 1.) 

 

(4) A
a
x1...xi-1:A

a
xi...xn:e ↔n A

a
x1...xn:e, 1 ≤ i ≤ n. 

 

(5) If e ↔ e’, then A
a
x1...xn:e ↔n A

a
x1...xn:e’. 

 

Since a function of n arguments can be represented 

equally well by any one of a certain class of n-inter- 

convertible obs, the above theorem suggests several ways of 

choosing simple functional representations.  For example, to 

represent the function F given by F(x1,...,xn)= E, one can take 

the ob A
a
x1...xn:e’, where e’ is the normal form 



26 

   

of the ob form e representing the expression E.   

 The properties given in Theorem 2-4 hold for all 

abstracts.  We may expect that by choosing abstracts in some 

specific manner, these properties could be strengthened, thus 

simplifying our work with the abstracts.  That this is indeed 

the case is shown by the following description of (a modified 

version of) Rosser’s abstraction algorithm [33] and the 

improved properties of the associated abstracts. 

(2-5) Definition.  Let e be an ob form and x1,...,xn be 

indeterminates.  The R-abstract of e with respect to x1,...,xn, 

denoted (A
R
x1...xn:e), is defined by induction on n and the 

structure of e as follows:  
 

(1) (A
R
x1:e) 

 

   Ke , if x1 oc/  e,  

   SKK, if e ≡ x1,  

≡     f , if e ≡ (fx1) and x1 oc/ f,  

   S(A
R
x1:f)(A

R
x1:g), otherwise, where e ≡ (fg) .   

 

 (2) (A
R
x1x2...xn+1:e) ≡ (A

R
x1: (A

R
x2...xn+1:e)). 

 

Again we may omit parentheses in writing R-abstracts with 

the understanding that the ob form to the right of the colon 

extends as far to the right as its well-formedness would 

permit. 
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Example. 
  

A
R
z:xz(yz) ≡ S(A

R
z:xz)(A

R
z:yz) ≡ Sxy, 

 

 A
R
yz:xz(yz) ≡ A

R
y:A

R
z:xz(yz) ≡ A

R
y:Sxy ≡ Sx, 

 

 A
R
xyz:xz(yz) ≡ A

R
x:A

R
yz:xz(yz) ≡ A

R
x:Sx ≡ S,  

A
R
x:xy ≡ S(A

R
x:x)(A

R
x:y) ≡ S(SKK)(Ky) . 

We obviously have x oc/  A
R
x:e, and, in general, for all  

1 ≤ i ≤ n, xi oc/  A
R
x1...xn:e .  Note also that for all 

indeterminates y, if y oc/  e, then y oc/  A
R
x1...xn:e.  Thus, if 

the ob form e contains no indeterminates other than xl,...,xn, 

then A
R
x1...xn:e is just an ob. 

(2-6) Lemma.  If, for all 1 ≤ i ≤ n, xi oc/ f and y ¬≡ xi, then  
 

 sub [f,y;A
R
x1...xn:e] ≡ A

R
x1...xn:sub [f,y;e] . 

Proof.  Repeated application of Curry’s Corollary 4.1 [9, p. 

208]. 

(2-7) Theorem.  Let e, e’, g1,...,gn be ob forms and xl,...,xn 

distinct indeterminates for some integer n ≥ 1. 

Then: 

(1) (A
R
x1...xn:e)g1...gn → sub [g1,x1;...;gn,xn;e].  

(2) If y1,...,yn are distinct indeterminates and yi oc/  e 

for 1 ≤ i ≤ n, then  
 

           A
R
x1...xn:e ≡ A

R
y1...yn: sub [y1,x1;...;yn,xn;e]. 

 

(3) a) If xi oc/  e for all 1 ≤ i ≤ n, then 

A
R
x1...xn:ex1...xn ≡ e.  

b)  Generally, for an integer m ≤ n, if xi oc/  e   
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for m ≤ i ≤ n, then 

     A
R
x1...xn:exm...xn ≡ A

R
xl...xm-l:e. 

 
(The right-hand side is considered to be 

 
simply e when m = 1.) 
   

 

(4) A
R
x1...xi-1:A

R
xi...xn:e ≡ A

R
x1...xn:e, 1 ≤ i ≤ n. 

 
(5) If e ↔ e’, then 
 

 A
R
x1...xn:e ↔n A

R
x1...xn:e’ . 

 
 
 
Proof.  For the case n = 1, parts (1) and (2) can be 
 
verified by induction on the structure of e, and 
  

part (3) is true by the definition of A
R
 . For n > 1, they 

can be proved by induction.  Assuming (1) true for n ≤ k, we 

show it for n = k+l, as follows.  Choose an indeterminate z 

such that z oc/  e and, for 1 ≤ i ≤ k+l, z ¬≡ xi  and z oc/ gi. 
 
Then: 
 

(A
R
x1x2...xk+1:e)g1g2...gk+l 

≡ (A
R
x1: (A

R
x2...xk+1:e)) g1g2...gk+l 

 

→ sub [g1,x1;( A
R
x2...xk+1:e)] g2...gk+l , 

 
by the case n = 1, 

 

  ≡ sub [g1,z;sub [z,x1;( A
R
x2...xk+1:e)]] g2...gk+l  

  ≡ sub [g1,z;( A
R
x2...xk+1:sub [z,x1;e])] g2...gk+l ,   

                   by Lemma 2-6, 
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≡ sub [g1,z;( A
R
x2...xk+1:sub [z,x1;e])]  

 

sub [g1,z;g2]...sub [g1,z;gk+1] 
 

by Definition 2-1 (1), since z oc/  g2,...,gk+1, 

≡ sub [g1,z;(( A
R
x2...xk+1: sub [z,x1;e]) g2,...,gk+1)]  

→ sub [g1,z; sub [g2,x2;...;gk+1,xk+1; sub [z,x1;e]]] , 

  by the induction hypothesis and Lemma 2-2,  

≡ sub [g1,x1;g2,x2;...;gk+1,xk+1;e] , 
 

by Definition 2-1 (2) . 

Proofs of other parts are quite simple and are omitted.   

 It has already been mentioned that xi oc/  A
R
x1...xn : e 

for all 1 ≤ i ≤ n.  To verify that R-abstracts are indeed 

abstracts (Definition 2-3), it suffices to replace gi by xi,   

1 ≤ i ≤ n, in Part (1) of Theorem 2-7.  Thus, now we have an 

algorithm for the SK representation of functions that are 

defined by functional equations.  

A comparison of Theorems 2-4 and 2-7 shows that          

R-abstracts possess simpler properties than the abstracts in 

general.  One exception is the property in Part (5) of Theorem 

2-7, where we do not get any improvement by using R-abstracts.  

The relation ↔n in the conclusion of that part cannot be 

strengthened to ↔ , as the following counterexample will           

show: Kx(Sx) ↔ x, A
R
x:Kx(Sx) ≡ SKS, A

R
x:x ≡ SKK,  

and SKS ↔1 SKK, but not SKS ↔ SKK (cf. discussion after 

Definition 1-12). 
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In spite of their simpler properties as compared to 

abstracts in general, R-abstracts rapidly increase in length 

and become tedious to compute as the number of indeterminates 

for abstraction increases.  In Section 2.4, we will describe an 

alternative, more practical algorithm for obtaining abstracts 

that have almost the same reduction properties as R-abstracts. 
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2.3 The Lambda-Calculus 

The previous section has introduced the notions of 

indeterminates, ob forms, and abstracts for the purpose of 

representing functions in SK.  It so turns out that the 

functions encountered in the representation of programs are 

defined solely in terms of formal variables; the resulting SK 

representations are, therefore, just obs, rather than ob forms 

containing indeterminates.  Thus, eventually, the use of 

indeterminates and the generalization of obs to ob forms are 

both dispensable; they are employed as a matter of notational 

convenience only.   

An alternative notion is that of lambda-expressions, which 

closely resemble abstracts in their properties, but in which 

the use of variables (indeterminates) is not as incidental.  

Lambda-expressions are the objects of the lambda-calculus LC , 

which may be regarded either as an augmentation to SK or an 

independent formal system that is similar to SK in several 

respects.   

We present below a brief description of lambda- 

expressions for the sake of completeness and comparison with 

abstracts.  For details, consult [8,9,33]. 

The symbols in the alphabet of LC are “(”, “)”, “λ” , “:”, 

and a denumerable collection of variables.  A lambda-expression 

(LE) is either a variable, or a word of the form (ef) or 

(λx:e), where e and f are LE’s and x is a variable. 
 

The LE (ef) is the application of e to f, and the LE 



32 

   

(λx:e) is the abstraction of e with respect to x. 

To abbreviate LE’s, we may omit parentheses under the 

convention that applications associate to the left and 

abstractions to the right, with the former taking precedence 

over the latter.  For instance, the LE 

 
(λx: (λy: ((xy) (λz: (((xz) (yz)) u))))) 

may be abbreviated to  

 
λx: λy: xy(λz: xz(yz)u) . 

As an additional convention, the above may be further 

abbreviated to  

 
λxy: xy(λz: xz(yz)u) 

 

In the LE (λx:e), the leftmost occurrence of x is a 

binding occurrence, and e is the range of that occurrence.  An 

occurrence of a variable in an LE is bound if it is either 

binding or in the range of any binding occurrence of the same 

variable; otherwise, the occurrence is free.  If e,f1,...,fn 

are LE’s and x1,...,xn variables, then 

 

sub [f1,x1;...;fn,xn;e] 

denotes the result of simultaneously substituting fi for all 

free occurrences of xi (1 ≤ i ≤ n) in e. 

 

The basic LC rules for transformation, called 

contractions, are these: 
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(a) λx:e →α λy:sub [y,x;e] , 

provided that y has no free occurrences in e, and no free 

occurrence of x in e becomes a bound occurrence of y by 

the substitution.  

 

(b)  (λx:e)f →β sub [f,x;e] , 

provided that no variable with free occurrences in f has 

bound occurrences in e. 
 

(c) λx:ex →η e, provided that x has no free occurrences in e.   
 
 
 Analogously to the development in the case of SK, we  

define: immediate reduction (→im) of LE’s as the application 

of an α-, β-, or η-contraction on their parts;
2
 reduction (→) 

as a sequence of immediate reductions; expansion (or, 

respectively, α-, β-, η-, immediate expansion) as the converse 

of reduction (or, respectively, α-, β-, η-contraction, 

immediate reduction); and interconvertibility (↔) as a 

possibly empty sequence of immediate reductions and expansions.  

(The use of the same symbols → , →im and ↔ to represent the 

different relations of SK and LC should not cause any 

confusion.)  The Church-Rosser theorem holds for LC as well [9, 

Ch. 4]: If e ↔ f, then there exists an LE g, such that e → g 

and f → g.  But note the differences from SK: 

 
2  The LE e is an immediate part of the LE’s (e f), (f e),  

and (λx:e), where f is an LE and x is a variable. 
A part of an LE is either the LE itself or a part of an 
immediate part of the LE. 
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An LE is irreducible if no β- or η-contraction is applicable 

to it even after any applications of α-contraction.  Given an 

LE e, if there exists an irreducible LE f such that e ↔ f, 

then f is a normal form of e.  The normal forms of LE’s are 

unique only up to the applications of α-contraction. 

The following properties of LE’s can be derived easily 

from the above definitions. 

(3-1) Theorem.   

(1) If none of y1,...,yn has a free occurrence in e and 

no free occurrence of xi, 1 ≤ i ≤ n, in e becomes a bound 

occurrence of the corresponding yi in e by the substitution 

below, then  λx1...xn:e → λy1...yn:sub [y1,x1;...;yn,xn;e]. 

(2) If no variable with a free occurrence in any of 

g1,...,gn has a bound occurrence in e, then 

   (λx1...xn:e)g1...gn → sub [g1,x1;...;gn,xn;e]. 

(3) If none of x1,...,xn has a free occurrence in e, then 

λx1...xn:ex1...xn → e. 

(4a) If e → e’, then λx1...xn:e → λx1...xn:e’.  

(4b) If e ↔ e’, then λx1...xn:e ↔ λx1...xn:e’. 

The similarity between LC and SK (augmented with ob forms) 

becomes obvious when we set up a correspondence between 

variables and indeterminates and then interpret 

 

(1) Ob forms by LE’s, by replacing S and K with λxyz:xz(yz) 

and λxy:x, respectively; 

(2) LE’s by ob forms, by replacing λ with A
R
. 
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With this interpretation, it is easy to see that whenever two 

ob forms are mutually related by the SK reduction, their 

corresponding LE’s are related by the LC reduction.  The 

converse, however, is not true.  Here is a counterexample.  Let 
 
f ≡ λx: (λxy:x)x((λxyz: xz(yz))x) 

→  λx: sub [x,x; (λxyz:xz(yz))x,y; x]  

≡ λx:x ≡ g , say. 
 
 

Let  fC  and  gC  denote the SK interpretations of the LE’s f 

and g, respectively; that is,  

 

      fC ≡ A
R
x: (A

R
xy:x)x ((A

R
xyz: xz(yz))x) , 

 

      gC ≡ A
R
x:x ≡ SKK . 

 

It can be verified easily that fC ≡ SKS.  Thus, in spite of the 

relation f → g , it is not the case that fC → gC .   

The above example also provides the explanation of this 

dissimilarity of behavior between LC and SK.  During the 

process of reduction in LC, contractions can be applied to any 

part of an LE, including the one to be abstracted (i.e., to the 

right of the colon) in an abstraction.  In SK an R-abstract is 

an abbreviation for an ob form, and there are no provisions for 

applying contractions on the part to be abstracted before the 

whole abstract is computed.  (Compare Parts (4) of Theorems 2-7 

and 3-1.) Thus, while all SK reductions can be carried out (in 
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terms of interpretations) in LC, additional reductions are 

possible in LC that have no SK counterparts.  By supplementing 

SK with some special rules, its reductions may be made to 

correspond exactly with those in LC [9, p. 218].  The modified 

reductions are termed strong; in contrast, SK reductions are 

weak.  But in strengthening the reductions, one loses the 

extreme simplicity of the SK reduction process as presently 

based on S- and K-contractions alone. 

 

Although weaker, the SK reductions completely suffice for 

the modelling of programming languages, and in the sequel, we 

describe our model in terms of SK only.  But, since all of the 

reductions that we use also permit LC interpretations, the 

model may just as well be regarded as being in LC; the only 

needed modification is to replace the symbol A (the future 

alternative to A
R
) by A, and to consider S and K as 

abbreviations for the LE’s  λxyz:xz(yz) and  λxy:x, 

respectively.  A purely LC formulation of our model is given in 

[1].   

 

We also remark that LC supports extensionality -- the 

property that if fa ↔ ga for all a, then f ↔ g -- while SK 

does not.  As a result, two representations of the same 

intuitive function of n arguments are mutually interconvertible 

in LC but, in general, only n-interconvertible in SK.  This, 

however, is no hindrance at all: It is the mechanical process 
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of functional evaluation that we keep simple by adhering to 

weak reductions.  But in making formal arguments about 

functions, such as proving equivalence of functions and in 

choosing function representations, we may freely employ n-

interconvertibility, which is as easy to use in these cases as 

interconvertibility. 
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2.4 Additional Obs 
 

In this section, we define a number of obs and ob families 

that will be employed in the representation of programs.  We 

begin by introducing the most important of these: 

 
(4-1) Definition.   
 
 I ≡ SKK ,    B ≡ S(KS)K , 
 
 C ≡ S(S(KS)(S(KK)S))(KK) , 
 
 W ≡ SS(SK) ,   Z ≡  KI , 
 
 T ≡ CI ,       D ≡ WI , 
 
 β ≡ B(BS)B,    Y ≡ B(SWW)B ,  Ω ≡ YK . 
 

Clearly, I, B, C, and W are normal obs.  Though it may not 

be so obvious from their definitions, the obs Z, T, D, β, and Y 

can be easily seen to be normal also.  However, it will follow 

from the property of Y given below that Ω does not possess a 

normal form.   

We shall use the term “rule” to designate frequently used 

reduction properties.  We list a set of rules (including S- and 

K-contraction for completeness) that can be easily derived from 

the above definitions.   

 
 (4-2) Rule.  For all obs a, b, c, d: 
 
 (1) Sabc → ac(bc) , 

 (2)  Kab  → a  , 

 (3)  Ia   → a      , 
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 (4)  Babc  → a(bc) , 
 

 (5)  Cabc  → acb   , 
 

 (6)  Wab   → abb   , 
 

(7)  Zab   → b     , 
 

(8)  Tab   → ba    , 
 

(9)  Da    → aa    , 
 

(10)  βabcd → a(bd)(cd), 
 

(11)  Ya    → a(Ya) , 
 

(12)  Ωa    → Ω    . 
 

We may wish to incorporate some rules directly in an ob 

reducing mechanism in order to avoid intermediate reduction 

steps.  This places the selected rules at par with 

contractions.  Equivalently, we may wish to extend the calculus 

by admitting the obs with such rules as new primitive obs (in 

addition to S and K), and the rules themselves as contractions.  

In general, we have the choice of many rules for the same ob.  

As an example, for the ob B we have: 

 (a) B     → S(KS)K 

 (b) Ba    → S(Ka) 

 (c) Bab   → S(Ka)b 

 (d) Babc  → a(bc) 

 (e) Babcd → a(bc)d 

For the sake of determinateness in reduction, however, we 

should allow only one rule for each primitive ob.  (Note that 

if B is regarded as a primitive ob and (d) as the 
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“B-contraction,” then, by Definition 1-4, the ob Bab has to be 

considered irreducible whenever a and b are irreducible.) 

Although SK is formulated in terms of S and K alone, we shall 

state unique rules for the obs that are important enough to be 

candidates for use as primitives in an extended calculus.  Now, 

whenever any extensions to SK are stipulated, the following 

question naturally arises: Do the Church-Rosser Theorem and 

related properties remain valid in the extended calculus? 

Fortunately, this theorem holds in very general situations 

involving replacement rules (Rosen [32]).  It follows from 

Rosen’s work that the theorem is supported, for example, by the 

calculus containing S, K, and the obs of Definition 3-1 as 

primitives and Rules 3-2 as contractions.  Furthermore, the 

standard-order reduction algorithm continues to be valid in the 

extended calculus.   

We shall next describe the representation of natural 

numbers and number-theoretic functions.  Following Church [8, 

Chap. 3], we represent a natural number n by an ob n with this 

desired property:  

 
(4-3)      nxy  →  x(x( ... (x y) ...)) . 
                  
                         ↑    
                    n occurrences of x 
 
 

The ob n is defined inductively in terms of the obs suc and 0, 

representing the successor function and zero, respectively, as 

follows: 
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 (4-4) Definition.   
   
                      suc ≡ SB    , 
                      
                      0   ≡ Z     , 
 
 n+1 ≡ suc n . 
 

That is, we have 
 
 0 ≡ Z , 1 ≡ SBZ , 2 ≡ SB(SBZ) ,   ...   . 

Using the above definitions, we immediately obtain: 

(4-5) Rule. 

 (1) 0xy → y , 

 (2) n+l xy → x(nxy) , 

from which the property (4-3) follows by induction.   

 At this point, we introduce some notation due to 

Curry [9]: We write a°b for Bab and a(n) for nBa.  Consequently, 

we have:  

 
(4-6) Rule. 

  (1) (a°b)c → a(bc), 

  (2) a(n)bcl...cn → a(bc1...cn). 

In particular:  

 

 (3) K(n)ab1...bnc  → ab1...bn    , 

   (4) B(n)ab1...bncd → ab1...bn (cd). 

 

In expressions involving ° we shall regard ° as being of lower 

precedence than application and of higher precedence 
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than another ° at the right.  Thus a°bc will stand 

for a°(bc), not (a°b)c, and a°b°c for (a°b)°c, not a°(b°c).  

Note, however, that a°b°c ↔1 a°(b°c). 
 

Anticipating the forthcoming discussion of tuples, we 
 
next introduce the representation of ordered pairs and triples. 

(4-7) Definition. 

 <a,b>   ≡ C(Ta)b  , 

 <a,b,c> ≡ C<a,b>c . 

The definition yields the following reduction properties.   

(4-8) Rule. 

  (1) <a,b>c → cab , 

  (2) <a,b>K → a   and   <a,b>Z → b , 

  (3) <a,b,c>d → dabc , 

  (4) <a,b,c>(K°K) → a,  <a,b,c>(KK) → b, 

    <a,b,c>(KZ) → c. 

We can now describe the representation of the predecessor 

function on natural numbers. 
 
(4-9) Definition.   pred   ≡  <S(BCT)suc°T0, <0,0>,K>. 
 
(4-10) Rule. 
                               0, if n = 0,  

pred n →  
                        n-1, if n > 0. 
 

To prove this rule, let h ≡ S(BCT) suc°T0.  Then it can be 

easily shown that 

 
h <m, n> → <n, n+l> . 
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Hence, 
 pred n ≡ <h, <0,0>, K> n 
 
 → n h<0,0>K 
 

→ h(h(h( ... (h <0,0>) ... )))K 
 

                        ↑ n occurrences of h 
 
   <0,0>K → 0,         if n = 0 , 
                 → 
           <n-1,n>K → n-1,     if n > 0 . 
 

It will be found convenient to define the ob families by 

which the properties of K, I, and B are generalized in the 

following manner.   
 
(4-1l) Rule. 

 (1) Knab1...bn → a, n ≥ 1 . 

 (2) I
m
nal...an → am , n ≥ m ≥ l , 

 

(3) B
m
nab1...bmc1...cn → a(blcl...cn)...(bmcl...cn), 

 
m,n ≥ 1 . 

 
Thus, we will have  

K ↔2 K1 ,  I ↔1 I
1
1 , B ↔3 B

1
1 , S ↔3 B

1
2I, 

 a(n) ↔n+1 B
1
na . 

 
The above rules can be realized by making the following 
 
(4-12) Definition.   
 

 (1) Kn ≡ n K , n ≥ 1 , 
 

 (2)  I
  

! 

n

m

 ≡ m-1 K (n-m K), n ≥ m ≥ l , 
  

 (3) B
  

! 

n

m

 ≡ n(m-l(C(3 B) β ° TI)B) , m,n ≥ 1 . 
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It is easy to verify parts (1) and (2) of Rule 4-l1 from the  
 
above definitions.  We shall prove part (3).   
 
Let h ≡ C(3 B) β ° TI.  We first show by induction on m that 
 

(*) m-1 hBab1...bmc1 → a(b1c1)...(bmc1), (m ≥ 1). 

This result is immediate for m = 1.  Assume it is true for m = 

k; then 

k h Bab1...bm+1c1 
 

→ h(k-l h B) ab1...bm+1c1 
 

→ (C(3 B) β ° TI) (k-1 h B) ab1...bm+1c1 
 

→ C(3 B) β (TI (k-1 h B)) ab1...bm+1c1 
 

 → 3 B(TI(k-1 h B)) β ab1...bm+1c1 
 

 → 3 B(k-1 h BI) β ab1...bm+1c1 
 

 → k-1 h B I(βa b1b2) b3...bm+1c1 , by 4-6 (2) , 
 

→ I(βab1b2c1)(b3c1)...(bm+1c1), by induction hypothesis, 
 

→ a(b1c1)(b2c1) ... (bm+1c1) . 
 

So (*) has been established.  To prove 4-1l (3) now, we use 

induction on n.  For m ≥ 1, we have 

 

B
  

! 

1

m

 ab1...bmc1 ≡ 1(m-l hB) ab1...bmc1 
 

→ m-1 hB(0(m-lhB))a) b1...bmc1 
 

→ m-l hB ab1...bmc1 
 

                    → a(b1c1)(b2c1) ... (bmc1) , by (*). 
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Hence assuming 4-11 (3) true for m ≥ 1 and n = k, we obtain 
 

B
  

! 

k+1

m

ab1...bmc1...ck+1 ≡ k+1(m-l h B) ab1...bmc1...ck+1 
 

                     → m-l hB (k(m-l hB)a) b1...bmc1...ck+1 

       → k(m-l hB a(b1c1)...(bmc1)c2...ck+1 , by (*), 

       ≡  B
  

! 

k

m

a(b1c1)...(bmc1)c2...ck+1 
        

       → a(b1c1c2...ck+1)... (bmc1c2...ck+1) , 
 

by induction hypothesis. 
   

As shown by the next definition and the succeeding rues, 

it is possible to generate the above ob families from single 

obs. We can thus avoid postulating infinitely many primitives 

in an extended calculus. 

 

(4-13) Definition.  
 

 (1) K  ≡ TK , 

 (2)  I   ≡ βB(CpredK)(CCK°Tpred) , 

 (3)  B  ≡ T°C(Cpred(C(3B) β°TI))B . 

 
(4-14) Rule.   
 

 (1) K n → Kn , n ≥ l , 
 

 (2) I m n → I
  

! 

n

m

 , n ≥ m ≥ l , 
 

 (3) B m n → B
  

! 

n

m

 , m,n ≥ l . 
 

Proof.  Omitted. 
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Before listing further obs, we state an algorithm to 

obtain abstracts in terms of the obs Kn , I  

! 

n

m

, and B
  

! 

n

m

.  Unlike 

the algorithm of Definition 2-5 in which abstraction is carried 

out for one indeterminate at a time, the present algorithm 

performs the abstraction with respect to all specified 

indeterminates in a single step, and amounts to simple 

replacements of indeterminates with special obs. 
 
(4-15) Definition.   

(1) An initial component of an ob form is either the ob 

form itself or the left immediate component of an initial 

component of the form. 

(2) A primal component of an ob form is either its 

shortest initial component, or a right immediate component of 

one of its initial components. 

 

Example.  The ob form e ≡ SK(x(KK)yz)(S(wz)(SSy))(xyz) has five 

initial components, namely, S, SK, SK(x(KK)yz), 

SK(x(KK)yz)(S(wz)(SSy)), and e itself; the primal components of 

e are S, K, x(KK)yz, S(wz)(SSy), and xyz. 

 

(4-16) Definition.  Let e be an ob form and x1,...,xn (n ≥ 1), 

be indeterminates.  Then the *-abstract of e with respect to 

x1,...,xn, denoted A*x1...xn:e, is the first of the following 

ob forms, selected in the given order, according as the 

condition is satisfied: 
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 (1)  Kne , if xi  oc/  e for all 1 ≤ i ≤ n, 

 (2)  I , if e ≡ x1...xn, 

 (3)  I
  

! 

n

i

 , if e ≡ xi for some 1 ≤ i ≤ n, 

 (4)  f , if e ≡ fx1...xn , and xi  oc/  f for all 1≤i≤n, 

 (5)  B
  

! 

n

m

 I I
  

! 

n

m

 (A*x1...xn:f2)...(A*x1...xn:fm) ,  
 

          if e ≡ f1f2...fm ,  f1,f2,...,fm are primal 

components of e, and f1 ≡ xi for some 1 ≤ i ≤ n, 

 

 (6) B
  

! 

n

m-1

fl(A*x1...xn:f2)...(A*x1...xn:fm) , 
 

if e ≡ f1f2...fm , f1 is the longest initial 

component of e such that xi  oc/  f1 for all 1 ≤ i ≤ n, 

and f2,...,fm are primal components of e. 

 

Note that for cases (5) and (6), we decompose the ob form 

e into an initial component and a number of primal components, 

with the initial component chosen to be either a single 

indeterminate among x1,...,xn, if possible, or else the longest 

possible ob form not containing any of x1,...,xn. 

 

 

Example.  To find A*xyz:e, where e is as defined in the 

previous example.  Diagrammed below is the decomposition of e 

and its components according to the conditions prescribed in 

(5) and (6) above. 
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SK (x  (KK)  y  z) (S  (w  z) (SS  y)) (x  y  z) 
                        _  _   __  _                                                   

                              1  2   1   2 
         _   ___   _  _   _  _____  ______ 
          1    2    3  4   1    2      3 
      __ _______________ __________________  ________ 
       1        2              3      4 
 
Hence, A*xyz:e 
 

≡ B
  

! 

3

3
 (SK)(B

  

! 

3

4 II
  

! 

3

1
 (K3(KK))I  

! 

3

2
 I

  

! 

3

3
)(B

2
3S(B  

! 

3

1 w I
  

! 

3

3
)(B

  

! 

3

1
 (SS)I

  

! 

3

2
))I . 

 
 

By using Rules 4-10, it can be easily verified that, 

except for parts (3b) and (4), Theorem 2-7 remains valid 

when  A
R
 is replaced by  A*.  It is possible to restore (3b) by 

a slight modification in the above definition of abstracts.  

Let A**x1...xn:e be specified similarly to A*x1...xn:e, except 

for modifying the clause (4) in Definition 4-16 to 

 

 

(4) A**xl...xm-l:f, if for some 1 ≤ m < n, 
 
 

e ≡ fxm...xn , and for m ≤ i ≤ n, xi  oc/  f . 
 
 

(We consider A** xl...xm-l:f to be simply f when m = 1.) Let e 

be the same ob form as before.  Then, we have 
 

A**xyz:e ≡ B
  

! 

3

3
 (SK)(B

  

! 

1

2

II
  

! 

1

1

 (K1(KK)))(B  

! 

3

2
S(K2w)(B  

! 

3

1
 (SS)I

  

! 

3

2
))I . 

 
 
It can be verified that with A** used instead of A

R
 , all parts 

except (4) of Theorem 2-7 remain valid. 
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In the sequel, we will drop the superscript on A 

altogether, thereby leaving the abstraction algorithm 

unspecified. 
 
A function on natural numbers is partial 

recursive if it can be defined using the following functions 

and function-forming schemes [14]: 

 1. Successor Function S(x) = x+1 . 

 2. Constant Functions C
  

! 

q

n
 (x1,...,xn) = q, q a natural 

          number. 

 3. Identity Functions U
  

! 

i

n

 (x1,...,xn) = xi, 1 ≤ i ≤ n. 

 4. Composition Scheme:  Given functions g,h1,...,hm, 

  to obtain f such that  

           f(x1,...,xn) = g (h1(x1,...,xn),...,hm(x1,...,xn)). 

5.   Primitive Recursion Scheme.  Given functions g and h,                                 

          to obtain f such that  
 

 f(x1,...,xm,0) = g(x1,...,xm) , 
 

f(x1,...,xm,y+l) = h(x1,...,xm,y,f(x1,...,xm,y)). 

6.   Minimalization Scheme.  Given a function g, to obtain  

          f such that  
 

f(x1,...,xm) = (µy)[g(x1,...,xm,y) = 0] 
 

= the least integer y, if one exists, such that 
 

g(x1,...,xm,y) = 0 . 
 

Now the obs suc,  Knq  and  I  

! 

n

i

 clearly represent the first 

three functions of the above list.  Further, if the obs 



50 

   

g and hi are the representations of the functions g and hi, 

respectively, then f ≡ B
  

! 

n

m

gh1...hm represents the f of Scheme 4.  

Thus, to complete the combinatory representation of partial 

recursive functions, it only remains to provide the obs 

primrecm and mnmlzm such that the definitions f ≡ primrecm h g 

and f ≡ mnmlzm g may correspond to Schemes 5 and 6.  For this 

purpose, we give the following definitions and rules, adapted 

from Petznick [29] with minor modifications. 
 
(4-17) Definition.   
 

 (1) primrec0 ≡ Axy:<Az:<suc(zK),x(zK)(xZ)>,<0,y>,Z> , 
  

 (2) primrecm ≡ B  

! 

4

2 primmrec0 , m ≥ 1 , 
  

 (3) mnmlz0 ≡ D(Axyz:zy(K(xx(suc y)z))y)0 , 
  

 (4) mnmlzm ≡ mnmlz0(m) (≡ m B mnmlz0) , m ≥ 1 . 
  
 
(4-18) Rules. 
 

(1) primrecm abc1...cmn 
 
 

bc1...cm , if n = 0, 
 → 

ac1...cmn-l(primrecmabc1...cmn-l), if n > 0. 
 

 

(2) mnmlzmab1...bm → n , 

 

provided that ab1...bm → 0, and, for all 0 ≤ p < n, 

there exists some q > 0 such that ab1...bmp → q . 
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We shall make use of certain special forms of recursion in 

specifying some ob sequences.  It is possible to give 

individual, explicit definitions for the obs of these 

sequences.  We indicate in the table below how all members of 

such ob sequences can be generated from a single ob, thus 

avoiding the need to postulate infinitely many primitives in an 

extended calculus containing such obs.   

 
(4-19) Table. 
 
 Specification of the Definition of the ob f 
 

 ob sequence  fi such that f i → fi                           
_____________________     _______________________  

 (1) f0 ≡ g , 

     fn+l ≡ h fn . f ≡ <h,g> . 

 (2) f1 ≡ g , 
  

 fn+l ≡ h fn . f ≡ <h,g>°e pred . 

 (3) f0 ≡ g , 
  

 fn+l ≡ h n . f ≡ C(SI(K°(h°pred)))g . 

 (4) f0 ≡ g , 
  

 fn+l ≡ h n fn . f ≡ primrec0 h g . 

 (5) f0 ≡ g ,                     f ≡ primrec0 <B,h>g . 
  

 fn+la1...an+1 ≡ h(fna1...an)an+1 .  
 

 (6)  f0 ≡ g, f ≡ primrec0(C°(CBh°TB))g. 
 

     fn+la1...an+1 ≡ ha1(fna2...an+1) .   
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For each entry in the Table 4-19, the relation fn → fn 

can be verified from the definition of f.  For example, we 

prove the case of entry (3).  Let p ≡ K°(h°pred), so that      

f ≡ C(SIp)g.  Then: 

 
     f0 ≡ C(SIp)g0 → SIp0g → I0(p0)g → 0(p0)g → g ≡ f0. 
  
     fn+1 ≡ C(SIp)gn+1 → SIpn+1g → In+1(pn+1)g 

→ n+l(pn+1)g → pn+l(n(pn+1)g)  

≡ (K°(h°pred))n+l(n(pn+l)g) 

→ K(h(pred n+l))(n(pn+lg) 

→ hn ≡ fn+l . 
 

To facilitate the representation of a succession of 

function applications, we introduce the ob family nestn: 
  
(4-20) Definition.   
 

 nest0 ≡ I , 
 

nestn+1a1...an+l ≡ Ba1(nestn a2...an+l) ,  

           [a1,...,an] ≡ nestn a1...an . 

 

(4-21) Rule.  [a1,a2,...,an]b → a1(a2(...(an b)...)) .   

Note the following properties of nests:  

[a,...,a] ↔1 n a , 

 
      ↑ n occurrences 

 

[a1,...,am,b1,...,bn] ↔1 [a1,...,am]° [b1,...,bn] . 
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The purpose of the next set of obs is to represent 

functional operators for permuting and duplicating the 

arguments of functions.  These obs thus generalize the effect 

of C and W. 

(4-22) Definition. 
  

 (1) rotl1 ≡ I , 
 

 rotln+1 ≡ (BC°B) rotln , n ≥ 1. 

  

 (2) rotr1 ≡ I , 

 rotrn+1 ≡ C(B°B)C rotrn , n ≥ 1. 

 

 (3) swap
  

! 

n

m

 ≡ [rotrm , rotrn , rotlm+1 , rotln] , l≤m≤n . 

 (4) perm
n
i1,...,im ≡ B  

! 

n

m

 I I
i1 

n ... I
im 

n , 

       l ≤ ij ≤ n for all 1 ≤ j ≤ m. 

 (5) dup0 ≡ I , 

 dupn+1 ≡ dupn°(W(n+1)rotrn+1)(n+1) , n ≥ 1. 
 

(4-23) Rule. 

 (1) rotln a b1b2...bn → a b2...bn b1 , n ≥ 1 . 

 (2) rotrn a b1...bn-1bn → a bnb1...bn-1 , n ≥ 1 . 

 (3) swap
  

! 

n

m  a b1...bn → a b1...bm-1bnbm+1...bn-1bm ,  

    l ≤ m ≤ n .  

      (4)  perm
n
i1,...,ima1...an → ai1...aim ,  

 

                       l ≤ ij <n for all l ≤ j ≤ m . 
  

      (5)  dupn a b1...bn → a b1... bnb1... bn . 



54 

   

 
Proof. (1), (2), and (5) by induction on n, 
 
(3) by (1) and (2), and (4) by Rule 4-10 (3). 
 

Our representation of ordered tuples is adopted from 

Church [8].  The essential idea is to regard the tuple 

<a1,...,an> as the abstract Ax: xa1... an , that is, to define 

tuples so as to obtain the rule 
 

                  <a1,...,an>b → ba1...an . 
 

(Two special cases of ordered tuples, namely, pairs and 

triples, and their associated rules were introduced earlier  

(4-7 and 4-8).  In addition to the tuple-forming operators, we 

will require a number of obs to represent various manipulations 

on tuples, such as inserting, retrieving, or changing elements.  

Here are the necessary definitions and rules. 
 
(4-24) Definition.   
 

 (1) tup0 ≡ I , 
 

 tupn+1 al...an+l ≡ C(tupn a1...an)an+1 ,  
            

          <a1,...,an> ≡ tupn a1...an ,       n ≥ 0 . 
       
 (2) insert ≡ C . 

 (3) elem
  

! 

n

m

 ≡ I
  

! 

n

m

 ,         l ≤ m ≤ n . 

 (4) replace
  

! 

n

m

 ≡ [rotlm+1,rotrm,K]tupn,  l ≤ m ≤ n . 

 (5) fput
  

! 

n

m

 ≡ B
  

! 

n

2

I(rotrn+1 replace  

! 

n

m

) ,   l ≤ m ≤ n . 

 

(6) funtup
  

! 

n

m

 = B
  

! 

n

m

 tupn ,           l ≤ m ≤ n . 
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(4-25) Rule. 
 

(1) <a1,...,an>b → ba1...an . 
 

(2) insert <a1,...,an>b → <a1,...,an,b> . 
     

          (3)  elem
  

! 

n

m

 a1...an → am ,               l ≤ m ≤ n . 
 

         (4) replace
  

! 

n

m

 b a1...an → <a1,...,am-1,b,am+1,...,an> , 
  
                                                   l ≤ m ≤ n . 

 

     <a1,...,an> (replace  

! 

n

m

 b) 
               

                   → <a1,...,am-1,b,am+1,...,an> ,  l ≤ m ≤ n . 
 

       (5) fput
  

! 

n

m

 fa1...an → <a1,...,am-1,fa1...an,am+1,...,an> , 
  
                                               l ≤ m ≤ n . 
 

               <a1,...,an> (fput  

! 

n

m

 f) 
 

       → <a1,...,am-1,fa1...an,am+1,...,an> ,  
                                            

                                            l ≤ m ≤ n . 
 

(6) funtup
  

! 

n

m

 f1...fm a1...an → < f1a1...an,...,fma1...an>. 
 
 
     Proof.  Omitted 
 
 

We claim that there exist obs nest, rotl, rotr, tup, elem, 

and replace possessing the following reduction properties: 
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nest n → nestn , n ≥ 0 , 
 

 rotl n → rotln , n ≥ 1 , 

 

rotr n → rotrn , n ≥ 1 , 
 

tup  n → tupn ,  n ≥ 0 , 
 

e1em m n → elem
  

! 

n

m

 , l ≤ m ≤ n , 
 

 replace m n → replace
  

! 

n

m

 , l ≤ m ≤ n . 
 
 

The definitions of nest, rotl, rotr, and tup follow directly 

from Table 4-19 and Definitions 4-20,22,24; in addition, we can 

take 
 elem ≡ I , 
 

replace ≡ Axy: [rotl (suc x), rotr x, K] (tup y) . 
 
 

It should be noted that, indeed, each ob sequence that we have 

introduced so far, or will introduce in the sequel, can be 

generated from a finite number of obs. 
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CHAPTER 3 
 

BASIC PROGRAMMING FEATURES 
 
 
 

In this chapter, we undertake the representation of the 

more elementary features of high-level programming 

languages, postponing the discussion of jumps and procedures 

to later chapters.  We use the ALGOL 60 [27] terminology and 

notation, whenever possible, to express programming language 

features. 

 
3.1 An Overview 
 

To construct our model, we start with the representations 

of the atomic constituents of program, such as constants and 

variables.  We then develop the rules for obtaining the 

representations of larger and larger programming constructs by 

combining the representations of their syntactic units in 

certain ways, eventually deriving the rules for representing 

whole programs.  Throughout this development, we are guided by 

intuitive interpretations of programming constructs as 

functions. 

 

There are several different ways in which a program may be 

regarded as a function, depending upon what we consider to be 

the arguments of the program and what we regard as the finally 

computed results.  These different functional 
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interpretations of programs may result in different choices 

of the representations of individual programming constructs.  

We will take the view that it is the external input-output 

behavior that most appropriately characterizes a program, and 

choose our representations with the goal of making this 

behavior as explicit as possible.  Consider, for example, the 

program:  
 
begin integer a,b,c; 

 

read a; read c; b := a+c; write b; b:=b-2xc;  

write b 

 
end 

 

(We use read and write as standard statements for performing 

single-item input-output operations).  As far as the external 

input-output is concerned, the above program behaves like a 

two-argument function which produces as value two quantities, 

the sum and difference of its arguments.  Thus, this program 

may be intuitively interpreted as the function f given by 

 
 f(x,y) = <x-y,x+y> . (i) 
 
 The function f is representable in SK by an abstract 
 
  f ≡ Axy:<x-y,x+y> (ii) 
 
having the reduction property 
 

 fxy → <x-y,x+y> . (iii) 
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(Although the expressions x-y and x+y are not exactly ob 

forms, they can be easily translated to be such -- as we will 

soon see.)  Accordingly, we would like to set up the model in 

such a manner that the representation of the above program may 

turn out to be an ob f, satisfying (iii).  So constructed, the 

model would, in essence, enable us to abstract out of a program 

code the function from the input space to the output space that 

the program computes.  For, f represents precisely this input-

output function. 

 

More generally, let P be a program, i1,...,ip, its inputs, 

and o1,...,oq its outputs.  Then we would like that the 

representations provided by our model satisfy the reduction 

relation 
  

(1-1) {P}{i1 }...{ip } → <{o1 }...{oq }> , 
 
 

in which the representations are denoted (anticipating a 

forthcoming notation) by enclosing within braces the symbols 

for the corresponding represented entities. 

 

The subsequent sections will show how the representations 

of various programming constructs may be chosen to fulfill the 

above requirement. 
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3.2 Variables 
 
 

For each program that we wish to represent in our model, 

we shall need a fixed correspondence between the variables 

declared in the program and the indeterminates of (the 

augmented) SK.  Now in block-structured programming languages, 

it is permissible to employ the same identifier to denote 

different program variables as long as those variables have 

different scopes.  In choosing the correspondence between 

program variables and indeterminates, it will not be necessary 

to distinguish between any two identically denoted variables 

that are declared in disjoint blocks.  But it will be necessary 

to distinguish all the variables that are declared in a set of 

nesting blocks.  (To distinguish two such variables denoted by 

the same identifier, it suffices, for example, to superscript 

the identifier by the respective block level numbers -- zero 

for the outermost (program) block, and n+l for the blocks 

immediately enclosed by a block at level n.) The correspondence 

between program variables and indeterminates will be set up by 

assigning distinct indeterminates to distinct variables (in the 

above sense) in some order.1   Since we 

 

 

1  We shall assign single indeterminates to both simple 

variables and array variables, however, the treatment of 

arrays is deferred to a later section, and until that 

discussion all variables are meant to be simple. 
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have not specified the alphabet for indeterminates, we shall, 

for convenience in expressing our representations, denote the 

indeterminates by the same symbols by which the corresponding 

program variables are denoted. 

The representation of a programming construct in a given 

program depends upon, among other things, the variable 

declarations in whose scope the construct appears.  To account 

for this, we need the notion of environment defined as follows: 

The environment of a construct in a program is a list of all 

the program variables that have been declared in the blocks 

enclosing the point at which the construct occurs.  In this 

list, the variables are to be arranged in their order of 

declaration within individual blocks, with the blocks taken in 

the innermost to the outermost order.2 

From what has been stated earlier about distinguishing 

program variables, it follows that the variables constituting 

an environment are all distinct. 

 

Example.  Consider the following schematic program, in which it 

is assumed that the omitted statements indicated by ellipses do 

not contain declarations. 

 

 

 
2 When the program contains procedures, the environments may 

also include formal variables and a number of other 
variables which are not explicitly declared in the program; 
these additional variables will be introduced in Chapter 5. 
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A:begin integer x,y; 

 
B:...; 

 
begin integer y,z; 
 

 C:...;   
 

end; 
 

begin integer x,w,z; 
 

D:..., 
 

end 
 

end 
 
 

From our view-point, this program makes use of six 

distinct variables, namely, x
0
,y

0
,y

1
,z

1
,x

1
, and  w

1
, where the 

superscripts indicate block level numbers.  For simplicity, let 

us omit the superscripts from x
0
,y

0
,z

1
, and w

1
.  Then the 

environments of the statements labelled A (i.e., the whole 

program), B, C, and D are, respectively, the null list 
 

(), (x,y), (y
1
,z,x,y), and (x

1
,w,z,x,y). 

 

In general, the SK representation of a construct depends 

upon the construct’s own environment as well as the 

environments of its constituents.  We denote the SK 

representation of a construct X appearing in the environment E 

by {X }E.  We drop the subscript from the above notation if the 

representation of X is the same in all environments (in which X 



63 

   

can legally occur). 
 

A formula specifying the representation of a construct in 

terms of its environment and the representations and 

environments of its constituents will be referred to as a 

representation rule.  In such a formula, the environments of 

the constituents will generally be omitted if they are the same 

as the environment of the construct under representation. 
 



64 

   

3.3 Constants, Operations, Relations  
 

The general criterion for choosing the SK representations 

of the values of the various types employed in programming 

languages and associated operations and relations may be stated 

thus: Let * denote a unary operation and ** a binary operation 

or relation.  Then for all operands a and b of the proper types 

for which * and ** are defined, it should be the case that 

 
{*}{a} → {value of (*a)} , 
 
{**}{a}{b} → {value of (a**b) . 

 

In this way, it becomes possible to interpret the computation 

of values as simply the SK reduction process.  Of course, the 

above criterion may be met by several different 

representations, in which case the choice is dictated by the 

simplicity of the resulting obs. 

We begin with the Boolean values.  The values true and 

false are represented by the obs K and Z, (Definition 2.4-1), 

respectively.  The motivation behind this choice is that it 

leads to a very simple representation of conditional 

expressions; namely,  

         {if b then c else d) ≡ {b}{c}{d}           (i) 

  

Quite short representations of logical operators can then be 

provided by using McCarthy’s well-known technique of expressing 

these operators in terms of conditionals [23]. 
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In particular, we obtain: 
 

(2-1) Definitions and Rules. 
 
  (1)  true ≡ K ,     true a b → a .    
  
  (2)  false ≡ Z ,    false a b → b .    
 
  (3)  ¬ ≡ <false,true> ,   ¬ a → a false true . 
 
  (4)  ∧ ≡ CC false ,    ∧ a b → a b false . 
 
  (5)  ∨ ≡ T true ,    ∨ a b → a true b . 
 
  (6)  imp ≡ CC true ,    imp a b → a b true . 
 
  (7)  eqv ≡ CS ¬ ,    eqv a b → a b (¬ b) . 
 

 It is an easy matter to verify that the above presented 

obs correctly represent the corresponding logical operators.  

For example, it is seen that 

 
 imp true true   → true true true   → true 
 
 imp true false  → true false true  → false 
 
 imp false true  → false true true  → true 
 
 imp false false → false false true → true 
 

 So that a conditional expression may be recognizable as 

such even when represented in SK, we make the following trivial 

definition and restate the representation rule (1).  

 (2-2)  Definition.  if ≡ I . 
 
(2-3)  Representation Rule.   
 
  {if b then c else d } ≡ if {b}{c}{d} . 
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Let us now turn to the representation of arithmetic in 

SK.  We will only be concerned with integers and rational 

numbers.  (The type called “real” in the programming parlance 

will be termed “rational” here.) The representation of natural 

numbers has already been described (Definition 2.4-4).  

Following the procedure common in analysis, one can consider 

integers and rational numbers to be equivalence classes of 

natural numbers and integers, respectively.  For convenience in 

carrying out reductions with their representations, it seems 

preferable, however, to represent these numbers in terms of 

uniquely selected members of the equivalence classes they stand 

for.  Thus, an integer p is traditionally defined to be the set 

of all pairs  <m,n>  of natural numbers in and n, such that, 

intuitively, p is a solution of the equation  m = n+p; but we 

prefer to define the SK representation of p to be the 

representation of that particular pair in the set which has the 

smallest m and n (at least one of these being necessarily 

zero).  Again, a rational number r is the set of all pairs 

<p,q> of integers p and q such that r intuitively satisfies 

p = q × r; but we prefer to represent r by the representation 

of that pair for which q is positive, p and q are relatively 

prime, and, furthermore, if p = 0, then q = 1. 
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Numbers of different types denoted by the same symbols in 

a programming language are in reality different entities 

possessing different ob representations.  We denote them by 

underlined numerals, unsubscripted in the case of natural 

numbers, and with subscripts Z and Q added for integers and 

rational numbers, respectively.  Thus, the obs 3, 3Z , and 3Q 

and represent the natural number 3, the integer 3 and the 

rational number 3.  As discussed above, we define them as 

follows: 

 3  ≡ suc (suc (suc 0)) , where suc ≡ SB,  0 ≡ Z , 

 3Z ≡ <3, 0> , 
 

     3Q  ≡ <3Z,1Z> ≡ <<3,0>,<1,0>> . 
 

Additional examples:  

 0Z    ≡ <0,0>,        0Q  ≡  <0Z,1Z>  ≡  <<0,0>,<1,0>> , 

 -3Z   ≡ <0,3>,       -3Q  ≡  <-3Z,1Z>  ≡  <<0,3>,<1,0>> , 

 -2.6Q ≡  <-13Z,5Z >  ≡  <0Z,13Z>  ≡  <<0,13>,<5,0>> . 

 

 Having settled upon the representation of numbers 

themselves, let us turn to the representation of operations and 

relations defined on numbers.  We denote the representations by 

the corresponding algebraic symbols, again unsubscripted in the  

case of natural numbers and subscripted with the letters Z and 

Q in the case of integers and rational numbers, respectively.  

Thus, +, +Z, and +Q represent natural number, integer, and 

rational addition, respectively, and are to be so 
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defined that, for example, 
 
 

+ 3 2 → 5 .  

+Z 3Z -2Z → 1Z ,   i.e., +Z <3,0><0,2> → <1,0> .  
 

+Q 5/6Q -4/9Q → 7/18Q  .  
 
 

Obs representing the successor and predecessor functions 

on natural numbers were defined earlier (Definition 2.4-4,2.4-

9).  Using the method of representing recursively defined 

functions given in Section 2.4, the SK representations of other 

operations and relations on natural numbers can be obtained 

from their well-known recursive definitions [14].  For strong 

combinatory calculi, this is done in Church [8]; for the weaker 

SK reductions, some representations are given in Petznick [29).  

Finally, to represent integer and rational operations, we can 

make use of the definitions of these operations in terms of, 

respectively, the natural number and integer operations on the 

components of the pairs representing their operands.  Consider 

integer operations for example.  First we will require an ob 

normlZ to represent the “normalization” operation of converting 

an arbitrary pair of natural numbers in the equivalence class 

denoting an integer to the unique pair chosen for the CC 

representation of that integer; e.g., 

 

 normlZ <l6,5> → <11,0> , 

 
Having represented the proper subtraction and minimum selection 
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operations on natural numbers by the obs -̇  and min,  
 
respectively, we would need the rule  

normlZ <m,n> → <-̇ m (min m n), -̇  n (min m n)> . 

 

In view of Rule 2.4-8(2), an adequate definition for this 

purpose is:  

normlZ ≡ Ax:< -̇ (xK)(min(xK)(xZ)), -̇ (xZ)(min(xK)(xZ))> . 

Now we can represent integer addition and subtraction (in terms 

of natural number addition on the components of the integer 

operands) by the obs defined to satisfy the reduction relations 

  +Z <a,b> <c,d> → normlZ <+ a c , + b d> , 
 

     -̇ Z <a,b> <c,d> → normlZ <+ a d , + b c> . 
 

As additional examples, let us consider the familiar 

programming operations of type-conversion from integers to 

rational numbers, and the “mixed addition” of rational and 

integer operands giving a rational result.  The obs float and 

+QZQ representing these operations have to satisfy, for 

example:  

 

float 2Z → 2Q , 

 

+QZQ -3.14Q 2Z → -1.14Q . 

 

 

 



70 

   

 

The following definitions clearly suffice for these obs: 
 

float ≡ Ax:<x,lZ> , 

+QZQ ≡ Axy:+Q x(float y) . 

 

Not all operations, of course, are so easy to deal with.  

Furthermore, the operations such as the exponentiation to 

fractional powers, which lead to irrational numbers, can be 

represented in our scheme only by defining them in terms of 

functions that approximate the results to some desired 

precision, using the techniques for representing functions that 

will be described later.  However, the actual details of 

representing various arithmetic operations and relations are 

not crucial to our model, for this model is not intended to be 

used in studying the purely numerical aspects of programs.  The 

purpose of the discussion in this section is simply to indicate 

that it is possible to represent arithmetic in SK, and to 

sketch a way of carrying out this representation. 
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3.4 Expressions 
 
 

We limit ourselves at present to the expressions that do 

not contain function designators.  (This restriction will be 

lifted when procedures are discussed.)  According to the 

requirements imposed by programming languages, any variable 

occurring in such an expression must also occur in the 

environment of the expression.  Let e be an expression and E 

its environment.  Then, in view of the SK representations 

chosen for operations and constants, the representation {e}E 

will be defined by induction on the (parse) structure of e to 

be the following ob form: 

 

1) If e consists of a constant represented by c, then 

{e}E ≡ c. 

2) If e consists of a program variable corresponding to 

the indeterminate x, then {e}E ≡ x. 

3) If e consists of a k-ary operation (or relation) 

represented by o, with the subexpressions el,...,ek as 

operands, then {e}E ≡ (o {e1}E ,..., {ek}E). 

 

It follows that the SK representation of an expression may 

be obtained simply by writing the expression in the prefix 

notation, with all operator-operands combinations 

parenthesized, and then replacing all operators and operands by 

their representations.  It further follows that the 
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representation of an expression is the same in all environments 

in which it can legally appear.  Thus, in accordance with a 

convention stated in Section 3.2, we may omit the mention of 

environment in denoting the representation of expressions. 

Consider, for example, the following expression in which 

x, y, z denote program variables:  

 
 x + if y ≠ 0 then z+y else l5. (i) 
 

In the prefix form, this expression may be written as:  

 
 (+ x (if (≠ y 0) (+ z y) 15)). (ii) 
 

In accordance with the conventions stated in Section 3.2, let 

us use the symbols x, y, z for indeterminates as well as the 

program variables.  Now if the program variables have been 

declared to be all of type integer, and the value of the above 

expression is to be of type integer also, then the expression 

may be represented by the ob form 

 

 +Z x (if (≠Z y 0Z) (+Z z y) 15Z). (iii) 
 

On the other hand, if the program variable x and the result are 

of the type rational, and y and z of type integer, then the 

expression may be represented by  
 

 +Q x (float (if (≠Z y 0Z) (+Z z y) 15Z)). (iv) 
 

where the ob float represents the type-conversion operation 
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mentioned in the previous section.  But for closer resemblance 

between the given expression and its representation, we find it 

preferable to write, instead of (iv),  
 

 +QZQ x (if (≠Z y 0Z) (+Z z y) 15Z) , (v) 
 

with the ob +QZQ representing the “mixed” addition of a 

rational number to an integer, producing a rational number as 

value. 

For conciseness of notation in stating the representation 

of expressions, we shall henceforth assume that all type-

conversions are absorbed within mixed operations as above. 

Furthermore, we shall omit all type indicating subscripts, 

leaving the types to be inferred from the context.  For 

example, we shall abbreviate (v) to 

 
 + x (if (≠ y 0) (+z y) 15) . (vi) 
 
 

No serious ambiguity will arise out of the above convention, 

because, except for using natural numbers in a few, explicitly 

indicated, instances, we shall use the numbers and operations 

of type integer only. 

We shall often need the abstract of the representation of 

an expression with respect to the indeterminates representing 

the variables in the environment of the expression.  The 

procedure of Definition 2.4-16 is particularly easy to apply in 

this case.  Specifically, for the special case of 
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expression representations, we may state the following 

(4-1) Abstraction Algorithm.  Let e be the ob form representing 

an expression which appears in the environment (v1,...,vn). 
 

Then to obtain Av1... vn:e, rewrite e, replacing 
 

(1)  each ob o representing a k-ary operation by (B
  

! 

n

k

 o) 

 (2)  each indeterminate vi, 1 ≤ i ≤ n, by I  

! 

n

i

, and 

(3)  each ob c representing a constant operand by (Knc). 

Example.  Let (x,y,z,w) be the environment of the  

expression  

 

if y = 218 ∧ x+3 < -z then z+(7+y) else  

if x × y ≥ z then entier (x/z) else -12. 

 

The above expression may be represented by the ob form  

e ≡ if (∧ (= y 218) (< (+ x 3)(minus z))) (+ z (+ 7 y)) 

   (if (≥ (x × y) z) (entier(/ x z)) -12) , 

where minus and entier have obvious significance.  Using the 

above procedure, we obtain 
 

Axyzw:e ≡ B
  

! 

4

3
 if(B

  

! 

4

2

 ∧ (B
  

! 

4

2

 = I
  

! 

4

2

 (K4 2l8))(B  

! 

4

2

 <(B
  

! 

4

2

 + I  

! 

4

1

 (K43)) 

(B
  

! 

4

1

 minus I
  

! 

4

3
))) (B

  

! 

4

2

 + I
  

! 

4

3
 (B

  

! 

4

2

 + (K4 7)I  

! 

4

2

))  

(B
  

! 

4

3
 if (B

  

! 

4

2

 ≥ (B
  

! 

4

2 × I
  

! 

4

1

I
  

! 

4

2

)I
  

! 

4

3
) (B

  

! 

4

1

 entier (B
  

! 

4

2

/I
  

! 

4

1

I
  

! 

4

3
)) 

         (K4 -12)) . 
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It is only in the representation of expressions that we 

are compelled to employ indeterminates.  In representing larger 

constructs, such as statements, which contain expressions as 

syntactic units, the expression representations will always be 

used as parts of abstracts of the above form, eliminating all 

indeterminates. 
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3.5 Assignments 

Before discussing any particular type of statement, we 

will first indicate the general idea behind our SK 

representations.  Consider a given statement S of a program.  

Let (v1,...,vn) be the environment of S, and denote by F the 

section of the program following S and extending all the way to 

the program end.  (F will sometimes be referred to as the 

program remainder of S.) The two parts of the program, one 

consisting of F alone, and the other composed of S and F 

together, may be interpreted as two functions φ and φ’, 

respectively, of the arguments v1,...,vn.  With this 

interpretation in mind, the effect of the statement S is to 

transform φ into φ’.  As the representation of S, therefore, we 

take precisely the function (to be accurate, the functional 

operator) σ given by 

 

 (σ(φ))(v1,...,vn) = φ’(v1,...,vn)               (i) 
 

which accomplishes the above transformation.   

 
 Using the Schönfinkel interpretation of functions 

(Section 2.2), the above relation may also be written as 

 

           σ(φ,v1,...,vn) = φ’(v1,...,vn) .              (ii) 
 

Now suppose we can somehow express the right-hand-side of 
 

(ii) in terms of the function φ, the variables v1,...,vn, 
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and possibly some constants.  Then we may take (ii) to be the 

functional equation defining σ, with v1,...,vn, and even 

φ, as formal arguments.  (Note that while the domains of the 

arguments v1,...,vn are the values of the corresponding program 

variables, the domain of φ consists of the program remainders 

considered as functions.) Now by interpreting (ii) in 

combinatory terms, and by abstracting the ob form representing 

its right-hand-side with respect to the indeterminates 

φ,v1,...,vn, we may obtain a definition of σ as an ob. 

 

We remark that if the statement S is modelled as above by 

the ob σ, then the execution of S is modelled by the reduction 

of  

σ φ v1 ... vn , 

 

in which the symbols v1,..., vn denote the representations of 

the values of the corresponding variables immediately prior to 

the execution of S, and φ denotes the representation of the 

program remainder of S. 

 

A key step in representing a programming statement is to 

define a suitable equation of the form (i) or (ii) for it.  

(The choice of φ’ is, of course, based on our intuitive 

understanding of the effect of the statement.) For the sake of 

motivation, we will include the details of this step in 

describing the first few of our representations. 
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Let us now look at the assignment statement vi:= e in the 

environment (v1,...,vn).  The φ’ in this case is obtained from 

φ by setting the argument vi to e.  Thus, in effect, this 

assignment statement behaves as the function σ such that  

 

         (σ(φ))(v1,...,vn) = φ’(v1,...,vn) 
 

                           = φ’(v1,...,vi-1,e,vi+1,...,vn) . 
 

In SK notation, this amounts to  

 
 

          σφv1...vn → φv1...vi-1 {e}(v1,...,vn)vi+1...vn) . 

 

Accordingly, we adopt the following SK representation of 

assignment statements: 

(5-1)  Representation Rule.   

{vi:= e }(v1,...,vn) ≡ Aφv1...vn: φv1...vi-1 {e}vi+1...vn) . 

 

(We recall from Section 3.2 the convention that in a 

representation rule, the environments of all representations 

are considered to be the same as that of the construct under 

representation, unless specified otherwise.  Also, we assume in 

the above representation that any type conversion needed for 

the assignment has been incorporated within e itself.) 

 
It has been mentioned earlier that only the variables 
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contained in the environment of an expression can occur in the 

expression.  Thus, no indeterminates other than v1,...,vn can 

occur in the ob form {e} in the above representation rule.  It 

follows from the abstractions specified in that rule that the 

SK representation of an assignment statement is an ob, not an 

ob form containing occurrences of indeterminates. 

 Note that the multiple assignments of ALGOL 60 [27] and 

the collateral (parallel) assignments of ALGOL 68 138] present 

no special problem.  Omitting the formal rules for their 

representation, we simply illustrate their treatment in the 

following example. 

Example.  Presented side by side below are some assignment 

statements and their SK representations.  Note that the 

environment of the first two statements is (x,y), and of the 

next three is (z,y
1
,x,y

0
); the superscripts in the latter 

environment are block level numbers, and are used to 

distinguish the two variables designated by the same 

identifier. 

 
 Program Statement Representations 
 

begin integer x,y; 

 x:=2; Aφxy:φ2y (or, Aφx:φ2) 

 y:=x+l9; Aφxy: φx(+xl9) 

begin integer z,y; 

 y:=x-5; Aφzy
1
xy

0
:φz(-x5)xy

0
 

 x:=y:=z+(x+y) ;    Aφzy
1
xy

0
:φz(+z(+xy

1
))(+z(+x y

1
))y

0
 



80 

   

 (y:=z, z:=y); Aφzy
1
xy

0
:φy1zxy

0
 

 
... 

end 

end 

 

In order to express the representation of assignments 

explicitly as obs rather than abstracts, we introduce some new 

obs.  Although their names are suggestive of the programming 

actions they represent, we emphasize that they 

are just ordinary obs, with no imperative notions attached to 

them.  

 
(5-2) Definition.   
 

 evalm ≡ C(B  

! 

n

2

I°rotrn+1) , n ≥ 1.   

 

 storei ≡ swap  

! 

i+2

2

K , i ≥ 1.   
 

 assign
  

! 

n

i

 ≡ CBstorei°evaln , n ≥ i ≥ 1. 

 

The following reduction properties are easy to derive.   

(5-3)  Rule.   

 

 evaln fφx1...xn → φ(fx1...xn)x1...xn  . 
  

 storei φex1...xi → φx1...xi-1e  . 

assign
  

! 

n

i

 fφ x1...xn → φx1...xi-1(fx1...xn)xi+1...xn  . 

Hence, we have the following alternative to (5-1). 
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(5-4) Representation Rule.   
 

  {vi:= e }(v1,...,vn) ≡ assign  

! 

n

i

 (Av1...vn:{e}) . 

 

Example.  Consider the statement y := x+19 in the environment 

(x,y).  In this case, we have 

 
         {e} ≡ {x+19} ≡ +x19 , 
 

         Axy:{e} ≡ B
  

! 

2

2

+I
  

! 

2

1

 (K219) ,  by (4-1), 
 

         {y := x+l9}(x,y) ≡ assign  

! 

2

2

 (B
  

! 

2

2 + I
  

! 

2

1

 (K219)) . 
 

To conclude this section, we point out the fact that we 

have eliminated the concepts of memory and address from our 

model, and have reduced the concept of assignment to that of 

substitution or function evaluation. 
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3.6 Compound Statements 
 

Consider the compound statement S begin S1;S2 end 

appearing in the environment (v1,...,vn).  Let F be the segment 

of the program that follows S.  We can interpret the program 

segments F and (S;F) to be two functions φ and φ’, 

respectively, of the arguments v1,...,vn , and we are 

interested in the representation σ of S with the functional 

transformation property 

 

(σ(φ))(v1,...,vn) = φ’(v1,...,vn) . 

 

Now the execution of (S;F) has precisely the same effect as 

(S1;S2;F).  Denoting by φ* the functional interpretation of the 

program segment (S2;F), and by σ1 and σ2  the representations of 

the statements S1 and S2 , respectively, we have 

 

  (σ1(φ*))(v1,...,vn) = φ’(v1,...,vn) , 

  (σ2(φ))(v1,...,vn) = φ*(v1,...,vn) . 
 
 

The above functional conditions can be expressed in SK as the 

following reduction relations:  

  σ φ v1...vn → φ’v1...vn , 

  σ1φ*v1...vn → φ’v1...vn , 

  σ2φ v1...vn → φ*v1...vn , 

 

These relations will certainly hold if we choose 
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φ* ≡ σ2φ ,  φ’ ≡ σ1(σ2φ) , and hence, σ ≡ Aφ:σ1(σ2φ) . 
 

The generalization to the case of an n-component compound 

is now obvious.  So we are led to the following SK 

representation of compound statements: 

(6-1) Representation Rule. 

 

{begin S1;S2;...;Sn end} ≡ Aφ:{S1}({S2}(...({Sn}φ)...))  

                  or, ≡ [{S1),{S2},...,{Sn}] 
 
 

(where the notation [...] for nests is as introduced in 

Definition 2.4-20). 

 Notice the convenient fact that in the above nest the 

individual statement representations appear from left to right 

in the same order in which the statements occur in the compound 

(cf.  Stratchey [36]). 

 

Example.  The representation of compound statements is 

illustrated below.  Individual statement representations are 

shown on the same line as the statements (on the last line for 

multiple-line statements), and are given names for reference 

purposes.  The environment is assumed to be (x,y).   

 
 Statements Representations 
 

(i) begin 

 
 x := 2; a ≡ Aφxy:φ2y 
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 y := x+3;      b ≡ Aφxy:φx(+x3) 
 
 x := y+x      c ≡ Aφxy:φ(+yx)y 
 
  end      d ≡ Aφ:a(b(cφ)) 
 
(ii) begin 
 
 y := 5;      e ≡ Aφxy:φx5 
 
 x := y+2      f ≡ Aφxy:φ(+y2)y 
 
     end                      g ≡ Aφ:e(fφ) 
 
 
 
 

The compound statements (i) and (ii) are intuitively 

equivalent.  How can their equivalence be demonstrated in our 

model?  The obs representing the statements (i) and (ii), 

namely, d and g, must have the same interpretation as a 

function of the variables φ, x, and y.  Alternatively, d and g 

must perform the same reduction when applied to the same obs φ, 

x, and y; that is, 

 
        d φ x y ↔ g φ x y .                         (*) 
 
 
To verify (*), we reduce both sides to the same ob. 
 
 
 g φ x y ≡ Aφ:e(fφ)φ x y 
 

→ e(fφ) x y,      since φ oc/ e and φ oc/ f, 
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              ≡ (Aφxy:φx5)(fφ) x y 
 
              → f φ x 5 
 
              ≡ (Aφxy:φ(+y2)y) φ x 5 
 
 → φ (+ 5 2)5 
  
 → φ 7 5 .  
 
 
 
Similarly, it is easy to see that 
 
 

d φ x y → φ 7 5 . 
 
 

In general, to show that two statements appearing in the 

same environment of n variables are equivalent, we need to 

prove that the SK representations f1 and f2 of those statements 

are mutually (n+1)-interconvertible (Definition 2.1-l1).  This, 

however, is an unnecessarily strict condition.  It is often the 

case that in all the intended executions of a program (that is, 

with the input data satisfying the program specifications), the 

values of program variables range over certain restricted 

domains only.  In such cases, the equivalence of two statements 

in the environment of n variables may be established by proving 

that, for x1,...,xn representing not all arbitrary obs but only 

the possible values corresponding to the variables x1,...,xn of 

the environment, and for all obs φ, it is the case that 

 

f1 φ x1...xn ↔ f2 φ x1...xn   . 
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3.7 Blocks 

 Next, let us consider a block S whose head declares the 

variables u1,...,um and initializes these to the values
3 

c1,...,cm , and whose body consists of the statements 

S1,...,Sp, in that order.  The execution of S can be broken 

down into three operations performed in succession:  

1) Extension of the existing environment by the variables 

u1,...,um (initialized at c1,...,cm). 

2) Execution of the compound begin S1;...;Sp end. 

 3) Deletion of the, variables u1,...,um from 

  the environment. 

 Let these three operations be denoted by the functions α, 

β, and γ.  Let (v1,...,vn) be the environment of S.  Then with 

the obvious significance of other symbols, we have  
 

(α(φ))(v1,...,vn) = φ(c1,...,cm,v1,...,vn) 

 (β(φ))(u1,...,um,v1,...,vn) = (σ1(σ2(...(σp(φ))...))) 

     (u1,...,um,v1,...,vn)  

(γ(φ))(u1,...,um,v1,...,vn) = φ(v1,...,vn) 
 

(σ(φ))(v1,...,vn) = (α(β(γ(φ))))(v1,...,vn) 

 By expressing the above in SK notation, and making use of 

proper abstractions and simplifications, we obtain 
 

σ ≡ Aφv1...vn: σ1(σ2(...(σp(Au1...um:φ))...))c1...cmv1...vn . 
 
 
 

3   We assume that the expressions c1,...,cm do not contain 

the variables u1,...,um; they may, however, contain the 

variables in the environment of S. 
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Consequently, we choose the following representation of blocks. 

 

(7-1) Representation Rule.   

{begin <type> u1 := c1;...;<type> um := cm;  

                 S1;...;Sp end}(v1,...,vn)  

     ≡ Aφv1...vn:{Sl}F({S2}F(...({Sp}F(Au1...um:φ))...)) 
 

{cl}E...(cm}Ev1...vn  , 
 

 where E ≡ (v1,...,vn) and F ≡ (u1,...,um,v1,...,vn) . 

(We assume that the expressions ci include any needed type-

conversions.) 

Using the notation of nests and tuples (Definitions 2.4-

20, 2.4-24), an explicit combinatory description of the above 

abstract is 

 

[<{cl}E,...,(cm}E> , [{S1}F,...,{Sp}F ,Km]] 

 

In the case that the variables are left uninitialized in 

the block-head -- as is normal in ALGOL 60 -- any arbitrary ob 

can be used for {ci} in the above representation.  One might 

wish to use for this purpose an ob which would play the role of 

the everywhere undefined function.  This function is modelled, 

for example, by the ob Ω (Definition 2.4-1) having the property 
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Ω a → Ω for all a.  It should be noted, however, that Ω does 

not possess a normal form.  As a result, if Ω is used in place 

of the missing ci’s in (7-1), then the presence of any 

variables that remain undefined throughout the program 

execution would cause the program representation to behave as 

if the program contained an infinite loop.4 

 Being the representation of statements, the components 

{Si}F, 1 ≤ i ≤ p, of the right-hand-side of (7-1) do not 

contain any indeterminates.  But being the representations of 

expressions in the environment (v1,...,vn), {ci}, 1 ≤ i ≤ m, may 

possibly contain v1,...,vn.  If the variables declared in the 

block head are not initialized, then, by recourse to a suitable 

abstraction algorithm (Theorem 2.2-4(3)), the indeterminates 

v1,...,vn can be dropped from the right-hand-side of (7-1).  We 

thus obtain the following simplified representation: 

(7-2) Representation Rule.   

{begin <type>u1;...;<type>um;S1;...;Sp end}(v1,...,vn)  

     ≡ Aφv1...vn:{Sl}F({S2}F(...({Sp}F(Au1...um:φ))...))ΩΩ...Ω 
                                              m times ↑ 
     where F ≡ (u1,...,um,v1,...,vn) . 
 
 

4 This situation may be avoided by using the ob 
 

Ω’ ≡ D(B(S(BSC))(BC(C(KD)))K 
 
   instead of Ω.  It is easy to verify both that Ω’ is 
   normal and that, for all a, Ω’a → Ω’ . 
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Note that if only constants are used to initialize the declared 

variables, then again the variables vi can be dropped, and the 

representation is similar to (7-2), except that the constants 

are used instead of the corresponding Ω.  
 

Example.  The environment of the following block is assumed to 

be (w).  The individual statements and their representations 

are given side by side below.  The representations have been 

given identifying names for reference purposes. 

 
 Statements Representations 
 
begin integer x:=5,y; 

  y := x-7;   a ≡ Aφxyw:φx(-x7)w 

  begin integer z; 

      z := 3+y;   b ≡ Aφzxyw:φ(+3y)xyw 

      x := z × x   c ≡ Aφzxyw:φz(×zx)yw 

  end   d ≡ Aφ:b(c(Az:φ))Ω 

end   e ≡ Aφ:a(d(Axy:φ))5Ω 

 

Explicit combinatory definitions of the above obs, in 

accordance with our previous representation rules, are as 

follows: 

a ≡ assign
  

! 

3

2
 (B

  

! 

3

2 - I
  

! 

3

1
 (K37)) , 

b ≡ assign
  

! 

4

1

 (B
  

! 

4

2

+(K43)I  

! 

4

3
) , 

 
 

  c ≡ assign
  

! 

4

2

 (B  

! 

4

2

 x I  

! 

4

1

 I  

! 

4

2

) , 
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  d ≡ [<Ω>,[b,c,K1]] , 
 

  e ≡ [<5,Ω>,[a,d,K2]] . 
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3.8 Input-Output 
 

We shall assume for simplicity that the program input and 

output operations are each restricted to a single file.  A file 

of items al,...,an will be represented by the tuple 

   < {al},...,{an}> . 

(The empty file is represented by the null tuple < > ≡ I.)  For 

given ob forms u and v, we will abbreviate the ob form insert u 

v by u,v ; also we will denote u,v,w by u,v,w , and so on.  By 

Rule 2.4-25 (2), we have  
 

  <xl,...,xn>,y ≡ <xl,...,xn,y>  , 
 

I,xl,...,xn ≡ <xl,...,xn>   , 
 

so that “,” may be regarded as the operation of writing on a 

file, and the file resulting from writing an item a on a given 

file b may be represented by {b},{a} . 

 Now let S be a statement appearing in the environment 

v1,...,vn of a program, and let σ be the ob representing S. 

In our discussion so far, σ has been defined as an abstract of 

the form   

      Aφv1...vn:...                            (*) 
 

with the indeterminate φ standing for the program remainder of 

S.  Accordingly, the execution of S has been modelled by the 

reduction of the ob 

 

                 σ φ v1...vn  , 
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in which the underlined symbols denote the representations of 

the values of the corresponding variables immediately prior to 

the execution of S.  In order to take input-output into 

account, we will generalize the representations so as to model 

the above execution by the reduction of the ob  
 

(8-1) σ φ v1...vn w u1 u2...um , 

with w denoting the output file and ui the i
th
 of the m items 

remaining on the input file at the moment of execution.  (As 

soon as an item is read, it is supposed to disappear from the 

input file.)  This arrangement requires that the 

representations of statements be generally of the form  
 

             A φ v1 ... vn o i1 ... im : ... ,  
 

where o,i1,...,im are the extra indeterminates corresponding to 

the output file and input items.  It must be evident, however, 

that the representations of those statements which do not 

involve input-output can be simplified back to the form (*) by 

choosing abstracts properly.  Furthermore, in the case of 

input-output statements, the following choice of SK 

representations is obvious:  

 
(8-2) Representation Rule.   
  

   {read vj}(v1,...,vn) ≡ Aφv1...vno: φv1...vj-1ivj+1...vno , 

 

  {write e}(v1,...,vn) ≡ Aφv1...vno: φv1...vn o,{e}  , 

 

where e is some expression to be output. 
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In order to provide explicit ob representation of input-

output statements, we introduce the following obs 
 
(8-3) Definition. 
 

 (1) read
  

! 

n

j
 ≡ swap

  

! 

n+3

j+1
 K(n+1) , 1 ≤ j ≤ n , 

 (2) writen ≡ [B  

! 

n+1

2

SK(n),K,(CC)(n)] . 
 
(8-4) Rule.   
 

 (1) read
  

! 

n

j
 φx1...xn o i → φx1...xj-1 i xj+1...xn o ,  

 (2) writen fφx1...xno → φx1...xn o,fx1...xn .  

Proof of (2). 

writen fφx1...xno 
 

≡ [B
  

! 

n+1

2

SK(n),K,(CC)(n)]fφx1...xno 
 

→ B
  

! 

n+1

2

SK(n)(K((CC)(n)f))φx1...xno , by Rule 2.4-21, 
 

→ S(K(n)φx1...xn)(K((CC)(n)f)φx1...xn)o 
 

→ K(n)φx1...xno(K((CC)(n)f)φx1...xno) 
 

→ φx1...xn((CC)(n)fx1...xno) , by Rule 2.4-6, 
 

→ φx1...xn(Co(fx1...xn)o) 
 

→ φx1...xn(Co(fx1...xn)) ≡ φx1...xn o,fx1...xn .   
 
    In view of the above rules, we propose the following  
 
alternative to (8-2): 
 
(8-5) Representation Rule.   
 

 {read vj}(v1,...,vn) ≡  read  

! 

n

j
 , 

      {write e}(v1,...,vn) ≡  writen (Av1...vn:{e}) . 
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3.9 Programs 
 

Let the input file initially presented to a given program 

consist of items i1,...,ip , and let o1,...,oq constitute the 

items of the final output file produced by the program.  As 

remarked in Section 3.1, we wish to choose a program 

representation so as to obtain the relation 

 

 {program }{i1 }...{ip } → < {o1 },...,{oq }> . (i) 
 
 

Now the execution of a particular statement of the program is 

modelled by the reduction of an ob given by (8-1) in the 

previous section.  Suppose that as an instance of such a 

statement we take the entire outermost block of the program.  

Recalling the significance of symbols used in connection with 

(8-1), we obtain the following conditions: 

σ ≡ {program block } 
 
 n = 0 as the environment is null , 

     w ≡ I , as the output file may be considered empty at the  

             start of the program , 

 m = p , and uj = ij , l ≤ j ≤ p. 

Furthermore, in place of φ , the “null” program remainder, we 

may arbitrarily choose to employ the ob I.  On substituting 

these values, the execution of the program is seen to amount to 

the reduction of the ob 
 

{program block } I I {i1 }...{ip } . (ii) 
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Next, consider (8-1) again -- but this time for the case when 

the entire program has been executed.  Now we have: 

 σ ≡ I, the null program segment, 

 n = 0 , as the environment is null, 

 w = < {o1 },...,{oq }> , representing the final 
 
             output file, 
 
 m = 0 , assuming the program exhausts the input file, 
 
  φ ≡ I. 

Thus, (8-1) in this case becomes the ob 
  

  I I < {o1 },...,{q } > , 

which reduces to 

                  < {o1 },...,{q } > .  (iii) 
 
 

If our representations work properly, then the ob 
 
(ii) should reduce to the ob (iii); that is, 

{program block }I I {i1 }...{ip } → < {o1 },...,{oq }>.  (iv)  

Comparing (i) and (iv), we obtain: 

(9-1) Representation Rule.        

       {program} ≡ (program block) I I . 

 

(9-2) Remarks.   
 
(1) From (iv) and (9-1) it follows that 
 
 

      < {i1 },...,{ip } > {program}  →  < {o1 },...,{oq }> ,  
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that is, 
 

<input file> [program}  →   <output file> . 
 

(2) In the ob representing a program, the component 

({program block} I) will be found to be of interest by itself; 

we will refer to it as the routine of the program. 

Example.  Following is the representation of the simple program 

mentioned at the beginning of Section 3.1. 
 
 

Statements                Representations 
 

begin integer a,b,c;     

  read a;                 f ≡ Aφabcoi:φibco 

  read c;                 g ≡ Aφabcoi:φabio 

  b := a+c;               h ≡ Aφabc: φa(+ac)c 

  write b;                j ≡ Aφabco:φabco,b 

  b := b-2xc;             k ≡ Aφabc:φa(-b(×2c))c 

  write b                 j 
 
end                       m ≡ Aφ:f(g(h(j(k(j(Aabc:φ))))))ΩΩΩ 
  

Since the ob in represents the program block, the 

representation of the whole program is p ≡ mII.  Now it can be 

verified that, for all integers a and b,  
 
p a b → <a+b,a-b> . 

 

Thus the program representation  p  indeed abstracts out the 

input-output behavior of the program (cf. Section 3.1). 
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The execution trace of the above program, when run with the 

integers 5 and 3 as data items, is reflected in the following 

SK reduction. 

p 5 3 ≡ m I I 5 3 → f(g(h(j(k(j(Aabc:I))))))Ω Ω Ω I 5 3 
 
→ g(h(j(k(j(Aabc:I))))) 5 Ω Ω I 3 

 
→ h(j(k(j(Aabc:I)))) 5 Ω 3 I 

 
→ j(k(j(Aabc:I))) 5 (+ 5 3) 3 I 

 
→ j(k(j(Aabc:I))) 5 8 3 I 

 
→ k(j(Aabc:I)) 5 8 3 I,8 ≡ k(j(Aabc:I)) 5 8 3 <8> 

 
→ j(Aabc:I) 5 (-8 (× 2 3)) 3 <8> → j(Aabc:I) 5 2 3 <8> 

 
→ (Aabc:I) 5 2 3 <8>, 2 → (Aabc:I) 5 2 3 <8,2> 

 
→ I <8,2> → <8,2> . 

 
 
 

3.10  Conditional Statements   

Recall that the SK representation of a Boolean expression 

b has the property 

 {b} p q → p , if b has the value true, 

  → q , if b has the value false. 

In view of the above property, we choose the representation of 

a two-branch conditional statement as follows: 

(10-1)  Representation Rule. 
 

{if b then S1 else S2 }(v1,...,vn) 

   

 ≡ Aφv1...vn: {b}{S1}{S2}φv1...vn  . 
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For the purpose of representation, a one-branch conditional 

statement (an if statement, in ALGOL 60 terminology) may be 

viewed as a two-branch conditional with a dummy or “do- 

nothing” statement for the second branch.  When appearing in 

the environment (v1,...,vn), the “do-nothing” statement can 

obviously be represented by 

    Aφv1...vn: φv1...vn  , 

that is, I.  Substituting the “do-nothing” statement for S2 in 

(10-1), we obtain the 

(10-2) Representation Rule.   
 

 {if b then Sl}(v1,...,vn) ≡ Aφv1...vn:{b}{S1}Iφv1...vn . 

 

In order to describe the above representations explicitly 

as obs, we first introduce a new ob sequence and its associated 

reduction rule. 

(10-3)  Definition.  condn ≡ β°(B  

! 

n

3
I). 

(10-4) Rule.   

condn bs1s2φx1...xn → bx1...xn(s1φx1...xn)(s2φx1...xn) . 

 

It is easy to see that if b is a Boolean expression, then for 

all ob forms p, q, and r, the following interconvertibility 

relation holds: 
 
{b}pqr ↔ {b}(pr)(qr)  . 

 
 

Applying this relation to (10-1), we may 
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obtain the following alternatives to (10-1) and (10-2). 
 
 
(10-5) Representation Rule. 
 

(1) {if b then S1 else S2 }(v1,...,vn) 

           ≡ Aφv1...vn: {b}({S1}φv1...vn)({S2}φv1...vn)  
 

           ≡ condn (Av1...vn: {b}{S1}{S2}  . 
  

(2) {if b then Sl}(v1,...,vn) 
 
           ≡ Aφv1...vn: {b}({S1}φv1...vn)(φv1...vn)  
 

           ≡ condn (Av1...vn: {b}{S1}I  .  
 
 
3.11 Arrays 
 

Arrays can be interpreted as tuples and combinations of 

tuples.  An array of a single dimension is represented by a 

tuple of the representations of the individual array elements, 

taken in the order of the lowest to the highest subscript.  An 

array of dimension n+1 is represented by a tuple whose elements 

are the representations of the n-dimensional subarrays (or 

slices, in the ALGOL 68 terminology [38]) obtained by fixing 

the first subscript in turn from the lowest to the highest 

possible value.  For example, the array A [l:2, 1:3] is 

represented by  

< < {A11},{A12},{A13}> , < {A21},{A22},{A23}> > , 

where (Aij} is the representation of the array element Aij.  As 

in the case of simple variables, an array identifier can 
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itself be used for the indeterminate assigned to the array 

variable. 

 

With the above interpretation of arrays, we next describe 

the representation of subscripted variables in expressions, 

assignments to subscripted variables, and array declarations.  

In this description, we assume for simplicity that all arrays 

have the lowest subscript bound of 1.  To obtain the correct 

representation in the case of an array one of whose subscript 

bounds, l, is different from 1, one simply needs to first 

increment the corresponding bound and subscript expressions 

throughout the program by 1-l. 

 

1) Subscripted variable as an operand in an expression  

The representation in this case is just the corresponding  

element of the tuple representing the array.  Thus, given the 

declaration <type> array v [1:n], we have, on the basis of Rule 

2.4-25 (3), 

 {v [i]} ≡ v elem
  

! 

n

i

  . 
 
 

This representation is inadequate, since, in general, n and i 

are given as expressions rather than constants, and their 

values may not be known at the time of SK translation of the 

program.  However, we have seen (cf. end of Section 2.4) that 

there exists an ob elem such that for all obs a and b if a → i 

and b → n, where i, n represent natural numbers i, n such that 
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1 ≤ i ≤ n, 
 

elem a b → elem
  

! 

n

i

 . 
 

Hence, given the array declaration v [1:e], we specify 
 
 

{v [f]} ≡ v(elem [f}{e}) . 

More generally, for the array v [1:e1,...,1:em], we have 

     {v [f1,...,fm]} ≡ v(elem {f1}{e1})...(elem {fm}{em}). 

 

2) Assignments to subscripted variables 
 

In this case, the representation consists in replacing 

the designated element of the tuple representing the array with 

the representation of the new value.  Let us first consider the 

arrays of a single dimension only.  We have already seen 

(Section 2.4, end) that there exists an ob replace such that, 

for all natural number representations i, m such that 1 ≤ i ≤ m 

and for all ob forms a1,...,am,b, 

   <a1,...,am>(replace i m b) → <a1,...,ai-1,b,ai+1,...,am> . 

Hence, given the declaration <type> array vj[1: e], we have 

{vj[f] := g}(v1,...,vn) 
 

≡ Aφv1...vn: φv1...vj-1(vj(replace {f}{e}{g}))vj+1...vn . 
 

The representation in the case of a higher dimensional 

array involves the replacement of all slices of the array 
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that are affected by the assignment.  It is easy to see that, 

when the array vj is declared to be of bounds [l:e1,...,l:em], 

the following is a suitable representation: 

 

     {vj (f1,...,fm] := g } 
 

        ≡ Aφv1...vn: φv1...vj-1hvj+1...vn , 
 

 
where 
 
 

h ≡ vj(replace {f1}{e1}( 

    vj((elem {f1}{e1}) (replace {f2}{e2}( 

    vj((elem {f1}{e1})(elem {f2}{e2}) (replace {f3}{e3}( 
 
         ... 
 

        vj((elem {f1}{e1})...(elem {fm-1}{em-1}) 
 

                        replace {fm}{em}{g}))... ))) ))) )) . 
 
 
3) Array declaration 
 

We treat array declarations in the same way as the 

declaration of simple variables with respect to environments 

and the representation of initialized variable values.  

However, there is the following exception: if an array is not 

initialized at the time of declaration, the block 

representation is obtained by assuming all the array elements 

to be Ω.  Thus, for an array with the bound pairs [1:2,1:3], 

the initial value is represented by <<Ω,Ω,Ω>,<Ω,Ω,Ω>>.  
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Since, in general, array bounds may be specified by 

expressions, we need to create tuples of arbitrary dimensions 

and sizes in which all elements are Ω.  This will be possible 

by means of the ob tupinit having the property 

 tupinit 1 m → <Ω,Ω,...,Ω> , 

                     ↑ m elements 
  

 tupinit n+l m1...mn+1 → <a,a,...,a> , (*) 

            ↑ m1 elements 

where a ≡ tupinit n m2...mn+1 . 

 

 In order to define tupinit, we need the following 

definition, making use of some obs of Section 2.4: 

 

(11-1) Definition.  maketup ≡ β(TW)pred tup . 

(11-2) Rule.  maketup n x → <x,..,x> , for integer n > 0. 

     ↑ n times 

(11-3) Definition. 

 

tupinit0  ≡  Ω , 
 

tupinitn+1 a1a2...an+1 
                    

                    ≡ maketup a1 (tupinitn a2...an+1) . 
 

Now from Table 2.4-19 we can define an ob such that for all 

natural numbers n ≥ 0, 

 

 tupinit n → tupinitn  . 
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It is quite straightforward to check that with this choice of 

tupinit, the relations (*) are indeed satisfied. 

 

Example.  The array representations discussed above are 

illustrated on the following block which is assumed to occur in 

the environment (n). 
 
 Statements                     Representations 
 
 

begin integer array p [1:n], 
 
          q [1:2,1:3]; integer r; 

 r := q [n,n+1];           a ≡ Aφpqrn:φpq(q(e1em n 2) 

         (elem(+ n 1)3))n 

 p [r]:= r+3 b ≡ Aφpqrn:φ(p(rep1ace 

      rn(+ r 3)))qrn 

 end                            σ ≡ Aφn:a(b(Apqr:φ)) 

  (tupinit 1 n)   

 
                                          <<Ω,Ω,Ω>,<Ω,Ω,Ω>>Ωn 
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CHAPTER 4 
 
 

ITERATION AND JUMP STATEMENTS 
 
 
4.1 Recursive Specification of Obs 
 

In dealing with program loops, we shall need obs having 

the property that they are equiform to one or more components 

of certain obs to which they reduce.  That is, these obs are to 

possess given reduction properties of the form 

 
           F → ...F...F...  .                       (i) 
 
 

We refer to such obs as recursively specified obs, and describe 

two approaches to define these. 

One approach to define recursively specified obs is to 

admit them as primitive obs, taking the respective properties 

required of them as the reduction rules associated with them.  

Since the reductions rules so added are recursive, in the sense 

that they reduce an ob in terms of itself, it is not at all 

obvious that the Church-Rosser property would hold in the 

extended calculus.  But it follows from the work of Rosen [32] 

that the Church-Rosser property is indeed preserved by such 

extensions, and, consequently, most other properties of 

reduction, such as the uniqueness of normal forms and the 

correctness of the standard-order reduction algorithm, also 

continue to be valid. 
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Another approach to defining the obs specified by the 

properties of the form (i) is to look for solutions of (i), 

treating such formulas as reduction relations involving an 

unknown.  Now, in general, (i) may be satisfied by more than 

one solution, so that we may have the choice of different 

explicit definitions for the same ob.  There is, however, no 

reason to expect that these different definitions of an ob are 

compatible to each other or to the definition of the ob as a 

new primitive -- compatible in the sense that all reduction 

sequences, which start with an ob having a recursively 

specified ob as a component and which use the different 

definitions of the recursively specified ob, yield the same 

normal form (if any).  In fact, incompatibilities do occur, as 

the following trivial example indicates: Let F be an ob 

specified by 

 
F → F, 

 
 

and let it be required to reduce the ob G ≡ SF.  By the 

definition of reduction (Definition 2.1-4), the given property 

of F is satisfied by every ob.  In particular, with F ≡ S and  

F ≡ K chosen as two possible definitions of F, the same ob G 

may be reduced to SS in one case and to SK in another! 

Moreover, both these results are in conflict with the one 

obtained by taking F as a primitive ob and F → F as the 

associated reduction rule.  For, then, G does not even have a 
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normal form! 
 

Thus, not all solutions of (i) are acceptable for a 

definition of the ob F.  Following Morris [26], to characterize 

those solutions of (i) for which the resulting definitions of 

the ob F are compatible with the definitions of the first 

approach (of taking (i) as a reduction rule), we may proceed 

thus.  Let us introduce a partial order on obs as follows:  

For obs a and b we say that a is extended by b, in symbols, a ≤  

b, if, for all obs c, it is the case that ca ↔ cb whenever ca 

possesses a normal form.  For example, it can be shown that Ω ≤  

b for all obs b, where Ω is as given in Definition 2.4-1.  Now, 

the particular solutions of (i) that we are interested in have 

the property that they are extended by all solutions of (i).  

In other words, for an explicit definition of the ob F 

specified by (i), we can take a minimal solution of (i) (with 

respect to ≤). 

For example, consider the relation F → F again.  Since 

this relation is satisfied by all obs, Ω is a minimal solution 

for it.  Thus, F ≡ Ω may be taken as a definition of the ob 

specified by F → F.  Under this definition of F, the ob G ≡ SF 

does not possess a normal form.  This agrees with the result 

obtained by taking F as a primitive ob, with F → F as its 

associated reduction rule. 

To obtain an explicit definition of the ob F given by (i), 

we may proceed as follows: Let x be an indeterminate, 
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and let  

 
                H ≡ Ax: ...x...x... 
 
 

be an abstract with respect to x of the ob form obtained from 

the right-hand-side of (i) by replacing the components equiform 

to F by x.  Now 
                YH → H(YH) ,  by Rule 2.4-1(18), 
 
                   → ...(YH)...(YH)... ,  by Theorem 2.2-4. 
 

Hence, YH is seen to be a solution of (i).  It has been shown 

by Morris [26] that this solution is also minimal.  

Consequently, 

 
 F ≡ YH ≡ Y(Ax:...x...x...) (ii) 
 

is an explicit definition of the ob specified by (i).   

  In general, (i) has infinitely many, mutually 

noninterconvertible, minimal solutions, which are, however, 

equivalent in the sense that they all have the same intuitive 

interpretations as functions.  The choice of any one of these 

for the explicit solution of (i), such as YH in (ii), is rather 

arbitrary.  To leave this choice unspecified, while emphasizing 

the minimality of the chosen solution, one may employ the µ-

notation of deBakker [3].  In this notation, the minimal 

solution of (i) is designated by the µ-expression 
 

µx:...x...x... , 
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where, the ob form to the right of the colon is obtained from 

the right-hand-side of (i) by replacing F with the 
 
indeterminate x.  

Since the formula (i) has the appearance of a relation, 

which may not necessarily suggest that it is intended to define 

anything, we shall use the notation 

 
 F ≡  ...F...F... 
 

to indicate that the ob F is being defined as specified by (i). 

The above treatment of recursively specified obs can also 

be generalized to include the simultaneous recursive 

specification of several obs, such as 

 

            F1 → H1F1...Fn , 

                 ...                                  (iii) 
 

            Fn → HnF1...Fn , 
 
 

where F1,...,Fn do not occur as components in H1,...,Hn.  The 

definitions of F1,...,Fn may be obtained as follows: 

1) The F’s specified by (iii) are considered primitive 

obs whose associated reduction rules are just the 

formulas (iii). 

2) The F’s specified by (iii) may be explicitly defined 

as the minimal solutions of the system of 
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reduction relations (iii). 
 
 

An explicit solution may be obtained as follows: Consider 

          

         <H1F1...Fn,...,H1F1...Fn> 

      ← funtup
  

! 

n

n

 H1...Hn F1...Fn,       by Rule 2.4-25,  

      ← <F1,...,Fn>(funtup  

! 

n

n

 H1...Hn) 

      ← <funtup
  

! 

n

n

 H1...Hn><F1,...,Fn> . 

 

Hence, we may take, for 1 ≤ i ≤ n, 

 

 Fi ≡ Y <funtup  

! 

n

n

 H1...Hn> elem  

! 

n

i

 . 
 
 

As before, we shall employ the notation 
 
 

        F1 ≡ H1F1...Fn , 

                 ...     
 

        Fn ≡ HnF1...Fn , 
 

to indicate the definition of the obs F1,...,Fn by means of the 

formula (iii). 
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4.2 Iteration Statements 

The representation of the for statement of ALGOL 60 is 

obtained by expressing this statement in terms of the simple 

(non-ALGOL 60) while loop of the form while ... repeat... .  To 

represent the latter, consider the statement while b repeat S 

appearing in the environment (v1,...,vn).  Calling this 

statement by the name T, we may (recursively!) describe it, for 

the purpose of SK representation, as 

 
if b then begin S;T end . 

 

Now the formulas for the representation of compound and 

conditional statements, (3.6-1) and (3.10-5(1)) respectively, 

are applicable to the above statement, so that its 

representation {T} is, recursively, the ob  
 

     Aφv1...vn: {b}((Aφ: {S}({T}φ))(φv1...vn) (φv1...vn) 
 

 ↔n+1 Aφv1...vn: {b}({S}({T}φ))φv1...vn . 
 
Thus, we adopt the 
 
(2-1)Representation Rule. 
 
   {while b repeat S}(v1,...,vn) 

 

          ≡ µx: Aφv1...vn: {b}({S}(xφ))φv1...vn . 

Alternative definitions of the same ob, call it X, are 
 

X ≡ Aφv1...vn: {b}({S}(Xφ))φv1...vn , 

X ≡ Y(Axφv1...vn: {b}({S}(xφ))φv1...vn) , 

X ≡ condn {b} [{S},X] I . 
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Example.  At this point, we illustrate the SK representations 

introduced so far by means of a complete program.  Also, as an 

application of the model, we derive the correctness of the 

program in terms of its representation.  Given below are the 

individual statement representations, shown on the same line as 

the statements (or on the last line for multiple line 

statements), and have been designated names for reference 

purposes. 

 

 
begin integer x,y; 

 read x;               a ≡ Aφxyoi:φiyo 

 y := 0;            b ≡ Aφxy:φx0 

 
begin integer z; 

 z := 0;  c ≡ Aφzxy:φ0xy 

 while z < x repeat 

 begin 

        y := l+y+2×z; d ≡ Aφzxy:φzx(+(+1y)(×2z)) 
 
 z := z+l e ≡ Aφzxy:φ(+z1)xy 
 
 end f ≡ Aφ:d(eφ) 
 
  end while g ≡ Aφzxy:(<zx)(f(gφ))φzxy 

 h ≡ Aφ:c(g(Az:φ))Ω 

  write y  j ≡ Aφxyo: φxy o,y 

end k ≡ Aφ: a(b(h(j(Axy:φ))))ΩΩ 

 {program ≡ P ≡ kII   
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We wish to prove that on reading a nonnegative integer n, 

this program will print out the integer n
2
.  According to our 

input-output conventions, we need to show that  

 

 P n → <n
2
> , for all integers n ≥ 0 . (i) 

 

This is done in four steps, as follows: 

 

(a) We show that, for all obs φ, and all integers n and i, 
 

          g φ i n i
2
 → φ i n i

2
  , if i ≥ n, (ii) 

g φ i n i
2
 → g φ i+1 n (i+1)

2
  , if i < n . (iii) 

By the definition of g, we obtain 
 

          g φ i n i
2
 → (< i n) (f(gφ)) φ i n i

2
 . 

If i ≥ n, then (< i n) → false, so that (ii) is immediate.  

Otherwise, (< i n) → true, and the above ob  

   → f(gφ)i n i
2
 → d(e(gφ))i n i

2
 → e(gφ)i n(+(+ 1 i

2
)(× 2 i)) 

 

   → gφ i+1 n (i+1)
2
 . 

 
 

(b) Next, for all integers n and i such that 0 < i ≤ n, we have 

 

g φ 0 n 0 → g φ i n i
2 . (iv) 

 

This is proved by induction on i.  From (iii) one easily 

verifies (iv) both for i = 1, and for i = j+l ≤ n when the case 

for i = j < n is assumed. 
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(c) Next, we claim that for all integers n ≥ 0, it is  
 
the case that 

              h φ n 0 → φ n n
2
  . (v) 

 
For, we have 
 
              h φ n 0  ≡ (Aφ:c(g(Az:φ))Ω)φ n 0 
 

    → c(g(Az:φ))Ω n 0  
 

    → g(Az:φ) 0 n 0 . 
 
Now if n = 0, then from (ii) it follows that 
 

 g(Az:φ) 0 n 0 → (Az:φ) n n n
2
 → φ n n

2
 . 

On the other hand, if n > 0, then for the case i = n (iv) 

yields 

          g(Az:φ) 0 n 0 → g(Az:φ) n n n
2
 

 

                        → (Az:φ) n n n
2 by (ii) 

 

                        → φ n n
2
 . 

 
(d) Finally, to prove (i) we simply use the definitions 

of the obs a through k, obtaining, for all integers n ≥ 0, 
 
  P n ≡ k I I n → a(b(h(j(Axy:I)))) Ω Ω I n 
 

→ b(h(j(Axy:I))) n Ω I 
 

→ h(j(Axy:I)) n 0 I 
 

→ j(Axy:I) n n
2 I   by (v) 

 

→ (Axy:I) n n
2 I,n

2
 

 

               → I,n
2
 

 

               → <n
2
> 
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Returning to the discussion of iteration statements, we 

can express the general for statement of ALGOL 60 in terms of 

the simple while loop treated above.  For example, we can 

reformulate the statement 
 

 for vi := e1 step e2 until e3 do S 

as 

begin vi := e1  while (vi - e3) × sign(e2) ≤ 0 repeat  

                begin S; vi := e1 + e2  end  end  . 

The latter form can then be represented as an ob by employing 

the representations of compound and while statements.  Omitting 

the details of derivation, we list below the SK representations 

for the three cases of for list elements, namely, arithmetic 

expression, (ALGOL 60) while element, and step-until element: 
 

  {for vi := e do S}(v1,...,vn) 

      ≡ Aφv1...vn: {S}φv1...vi-1{e}vi+1...vn .  

  {for vi := e while b do S}(v1,...,vn) 

      ≡ µx:Aφv1...vn:(Avi:{b}){e}({S}(xφ))φv1...vi-1{e}vi+1...vn                                   

     ≡ Y(Axφv1...vn:(Avi:{b}){e}({S}(xφ))φv1...vi-1{e}vi+1...vn). 
 

  {for vi := e1 step e2 until e3 do S}(v1,...,vn) 

≡ Axφv1...vn: (Y(Axφv1...vn:{(vi-e3)×sign(e2) ≤ 0}  

      ({S}(Av1...vn:xφv1...vi-1{vi+e2}vi+1...vn)) 
 

      φv1...vn))φv1...vi-1{e1}vi+1...vn . 
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4.3 Jump Statements 

 

We regard the execution of the statement S ≡ goto L in a 

program as the substitution of the part of the program 

following L for the one following S.  This viewpoint provides 

us with the representation of both labels and jump statements.   

    A label is identified with the part of the program 

following it.  To be accurate, the representation of a label L 

occurring in a program P is taken to be the routine (Remark 

3.9-2(2)) of the program P’ obtained from P by deleting all the 

statements, but retaining the declarations, that appear above 

L.  This representation can be obtained in a simpler manner by 

using the following inductive scheme: Let the label L occur in 

a block b whose declared variables are v1,...,vn . 

(1)  If L is followed by statements S1,...,Sm, and a label M, 

in that order, all within b, then 

 

{L} ≡ {S1}({S2}(...({Sm}{M})...)) 
 

(2)  If S1,S2,...,Sm are the statements following L to the end 

of b, then 

 

{L} ≡ {S1}({S2}(...({Sm}(Av1...vn:N))...)) , 
 

where N ≡ I, if b is the outermost block, else N is the 

representation of the program part following b, that is, of the 

(possibly imaginary) label immediately after the end of b. 
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According to the rules of ALGOL, the label to which a jump 

can be made must be in a block which is the same as, or outer 

to, the block containing the jump statement.  It follows that 

(the list of variables constituting) the environment of a jump 

statement must contain the environment of the referred label as 

a final segment.  Suppose (v1,...,vn) is the environment of the 

statement S ≡ goto L, and (vm,...,vn), where 1 ≤ m ≤ n, is the 

environment of L, and let φ represent as usual the program 

remainder of S.  The execution of S causes the program to 

compute the function {L}(vm,...,vn) instead of φ(v1,...,vn). 

Hence, the representation of S can be taken to be the ob 
 

Aφv1...vn: {L}vm...vn , 
 
or the (n+1)-interconvertible ob 
 

                  Aφv1...vm-1: {L} . 
 
Thus, we choose: 
 
 
(3-1)Representation Rule. 
 

{goto L, where the environment of L is (vm,...,vn), 
 
    1≤m≤n}(v1,...,vn)  ≡ Aφ:(Av1...vm-1:{L}) ≡ Km {L} . 

 It is sometimes convenient, specially in connection with 

conditional statements, to write the right-hand side in the 

alternative forms: 
 

      Aφv1...vn:{L}vm...vn , 
 

      Aφv1...vn:(Av1...vm-1:{L})v1...vn . 
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Example.  The representation of goto statements and labels is 

illustrated by means of a complete program.  The program below 

has been derived from the program given in the previous example 

simply by expressing the while loop in terms of goto’s.  As 

another application of the model, we prove the (input-output) 

equivalence of the two programs. 

 

As before, the representations of individual statements 

are shown on the same line as the statement, or on the last 

line for a multiple-line statement, and are designated 

identifying names.  The obs common to the representation of 

both programs have the same names. 

The label M serves to illustrate the case (1) of label 

representations discussed above; it is otherwise superfluous. 

 
begin integer x,y; 

   read x; a ≡ Aφxyoi:φiyo 

   y := 0; b ≡ Aφxy:φx0 

   begin integer z; 

     z := 0; c ≡ Aφzxy:φ0xy 

L:   if z=y then goto N 

            else goto M; d’≡ Aφzxy:(=zy)(Az:N)Mzxy 

M:   y := y+2×z+l; e’≡ Aφzxy:φzx(+(+y(×2z))1) 

     z := z+l; f’≡ Aφzxy:φ(+zl)xy 

     goto L g’≡ Aφ:L 

   end; h’≡ Aφ:c(d’(e’(f’(g’(Az:φ)))))Ω 
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N:write y              j ≡ Aφxyo:φxy o,y 
 
end  k’≡ Aφ:a(b(h’(j(Axy:φ))))ΩΩ 

 {program} ≡ P ≡ k’II 

  L ≡ d’M 

  M ≡ e’(f’(g’(Az:N))) 

  N ≡ j(Axy:I) 

 

We wish to prove that the above program and the program of 

the previous example produce the same output when executed with 

the same non-negative integer as the input data.  That is, in 

terms of their representations, we wish to show that for all 

integers n ≥ 0, 
 
 P n ↔ P’n . (i) 
 
Of course, this can be shown by using the previously obtained  

result Pn → <n
2
> in conjunction with a direct proof of the 

fact that P’n → <n
2
>.  But we will prove the equivalence of 

the programs by verifying, in effect, that their differing 

parts do the same work when the programs are executed.  These 

differing parts are represented by the obs h and h’.  If we can 

show that for all integers n ≥ 0, 

 

 h N n 0 ↔ h’N n 0 (ii) 
 

(where N ≡ j(Axy:I), defined in the present example), then (i) 

is demonstrated as follows.  From the previous example, part 

(d), we know that for all n ≥ 0, 
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 Pn → h(j(Axy:I))n 0 I ≡ hNn 0 I . 
 

But, using the definitions of the present example, we also have 
 P’n ≡ k’IIn 
 

→ a(b(h’(j(Axy:I))))ΩΩIn 
 

→ b(h’(j(Axy:I)))nΩI 
 

→ h’(j(Axy:I))n 0I ≡ h’Nn 0I . 
 

Hence, it follows from (ii) that Pn ↔ P’n . 

It remains to verify (ii).  From (v) in the previous 

example, we have for all integers n ≥ 0,  
 

h N n 0 → N n n
2
  . 

 

So (ii) would follow if we can also prove 
 

 h’ N n 0 → N n n
2
  . (iii) 

 

To outline the proof of (iii), we simply state the sequence of 

reduction relations leading to it. 

 

 N n n
2 , if i = n , 

 (1) L i n i
2
  →  

L i+l n (i+1)
2   , if i ≠ n . 

  
(2) L 0 n 0 → L i n i2,     for 0 ≤ i ≤ n . 
  
(3) L 0 n 0 → N n n2,       for n ≥ 0 . 
  
(4) h’φ n 0 → N n n2 ,       for n ≥ 0 . 
 
 

The treatment of designational expressions and switches is 

omitted, except for an example which should suffice to indicate 
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how these may be represented as obs.  In the schematic program 

below, b and c denote Boolean, and e and f, arithmetic 

expressions.  It is assumed that the omitted statements 

indicated by ellipses do not contain any declarations. 

begin integer x; 
 
M: ... 

 
begin integer y; 

 
... 

begin integer z; 

 
switch P := N, if b then P [e] else L, M; 

 
         ... 
 

N: ... 
 

begin integer w; 
 

... 
 

goto if c then N else P [f]; 
 

end w; 
 

end z; 

L: ... 

 
end y 

end 

The representations of the switch and goto statements in 

the above program are, respectively, 
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  {P } ≡  <{N},{b}(Azyx:{P}(elem  {e}3)zyx)(Az:{L}),Azy:{M}>,  

and 
 
Aφwzyx:{c}(Awzy:{M})(Aw:{P}(elem {f}3)). 

 

(Cf. Section 3.11.) Note that in the above two formulas 3, {e}, 

and {f} are to be natural number representations. 
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CHAPTER 5 
 

PROCEDURES 
 
 
 
5.1 F-procedures 
 

We use the term F-procedure to denote a type procedure 

without any side effects.  In particular, an F-procedure is a 

procedure in which 
 
(1) the procedure name is typed, 
 
(2) all parameters are called by value, 
 
(3) no global variables are modified, 
 
(4) no jumps are made outside the procedure body, 
 
(5) no procedures are used other than F-procedures. 
 
Because of the above restrictions, the representation of 
 
F-procedures is much simpler than that of general procedures. 
 
Since many procedures encountered in programs are truly 
 
F-procedures, it seems useful to deal with them as a special 
 
case. 
 

For the moment, let us consider only the F-procedures 

which do not involve global variables at all.  For these, the 

environment of the declaration is immaterial.  Let f be an F-

procedure and p1,...,pn be its parameters.  We wish to 

represent f in such a manner that for all expressions e1,...,en  

       

         {f}{e1}...{en} → {f(e1,...,en)} .           (i) 
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Such a representation is accomplished as follows: 

We use a variable  π  to denote the F-procedure value; that is, 

all assignments to  f  are represented as if made to π.  

Further, we represent the statement S constituting the body of 

f by taking its environment to be (π,p1,...,pn).  Now, starting 

with an arbitrary value of  π, and the values ei of pi , the 

execution of S has the effect of assigning the value 

f(e1,...,en) to π, and certain values to pi which are 

irrelevant to the result; say, we have 
 

        {S}φ π {e1}...{en} → φ {f(e1,...,en)}p1...pn .   (ii) 
 

To obtain (i) from (ii), we may initialize  π  with Ω, and 

choose the ob Aφp1...pn:π for φ and {S}φπ for {f}.  Thus we 

adopt the following 

 

(1-1) Representation Rule. 

{F-procedure f(p1,...,pn) with body S} 
 

 ≡ {S}(π,p1,...,pn)(Aπp1...pn:π)Ω 

  

It should be pointed out that a label appearing in the 

body of an F-procedure is to be represented as the part of the 

F-procedure (not the program) that follows the label. 

 

Example.  The following is an F-procedure; hence (1-1) is 

applicable. 
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integer procedure mod(x,y); 
 
  value x,y; integer x,y; 
 
begin integer q; 

 
    q := x+y;                          a ≡ Aφqπxy:φ(+xy)πxy 
 
    mod := x-y×q                       b ≡ Aφqπxy:φq(-x(×yq)xy 

 
  end q;                               c ≡ Aφ:a(b(Aq:φ))Ω 
 
                                       mod ≡ c(Aπxy:π)Ω 
 
 

Example.  Representation of the factorial function. 

          integer procedure fact(n); value n; integer n;  

             fact := if n = 0 then 1 else n × fact (n-1); 

As the body of this F-procedure consists of a single assignment 

statement, we have, by (3.5-1), 

 
{body} ≡ Aφπn:φ((=n0)1(×n(fact(-n1))))n . 
 

Hence, the representation of the F-procedure is given by the 

recursively defined ob 

   fact ≡  {body}(Aπn:π)Ω → An:(=n0)1(×n(fact(-nl))).   

A non-recursive definition of the above ob is 

 
   fact ≡ Y(Azn:(=n0)1(×n(z(-nl)))). 
 

Finally, it is easy to remove the restriction about global 

variables imposed earlier on functions: In case the global 

variable values are used (but not, of course, modified) in an 

F-procedure, we append the global variables to the actual 
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arguments as if they also were parameters in addition to the 

explicitly declared parameters of the F-procedure.  This is 

illustrated below. 

Example.   
 
begin integer x,y; - 
 

integer procedure f(n); 
 

value n; integer n; 

   f := n+x; a ≡ Aφπnxy:φ(+nx)nxy 

...  f ≡ a(Aπnxy:π)Ω 

begin integer z; 

   x := f(y)+z; Aφzxy:φz(+(fyxy)z)y 
... 
 
 
5.2 Call-by-name, Side-effects 
 

In the previous section, we have described the SK 

representation of procedures subject to rather stringent 

conditions.  We will now show how the representations can be 

extended to more general procedures, allowing call-by-name, the 

modification of global variables, and side effects.  However, 

we limit ourselves here to considering the formal parameters of 

the type integer and label only.  The extension of the model to 

include real and Boolean parameters is trivial. 

In ALGOL 60, a procedure call is intended to have the 

effect of an appropriately modified copy of the procedure body 

[27].  The modification in the case of call-by-name consists in 

replacing each instance of a called-by-name formal parameter by 
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the corresponding actual parameter.  (It is understood that any 

name conflicts between the variables appearing in the actual 

parameter expressions and the local variables of the procedure 

are to be first removed by renaming the latter variables.) 

Instead of performing such symbolic substitution, however, 

which would require keeping procedures in text form at the 

execution time, most ALGOL compilers accomplish the same effect 

by treating formal parameter references in procedures as calls 

on special “parameter procedures” generated from actual 

parameters [30].  As a result, if an operation refers to a 

formal parameter during the execution of a procedure, then the 

procedure execution is suspended to evaluate the corresponding 

actual parameter in the environment of the procedure calling 

statement, and then the procedure execution is resumed using 

the thus-acquired value in the operation.  Of course, depending 

upon the type and use of a parameter, the actual parameter 

evaluation may yield a value (e.g., an arithmetic or Boolean 

quantity when the formal parameter is an operand in an 

expression) or a name (e.g., the address of a variable when the 

formal parameter appears to the left of an assignment 

statement).  Our SK interpretation is based on a similar idea.  

But we are able to avoid the notion of address, and work 

exclusively with values, by making use of a number of different 

“parameter procedures” for different operations performed with 

the same parameter; namely, the evaluation of actual parameter 

expressions, making assignments to the variables provided as 
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actual parameters, and jump to an actual label. 
 
 
 
5.3. Integer Parameters 
 

In the absence of procedures we were able to express each 

statement in a program as a function which had for its 

arguments the variable φ, denoting the program remainder (that 

is, the part of the program following the statement), and the 

variables constituting the environment of the statement.  

Clearly the representation of a statement S in a procedure body 

would involve two sets of program remainders and environments -

- namely, one set for S itself and one for the statement, say 

T, that calls the procedure.  The program remainder of T 

corresponds to the familiar “return” address or label for the 

procedure call.  Now, any formal parameter instances in S give 

rise to actual parameter evaluations in the environment of T, 

but after the evaluation the control must eventually transfer 

back to S.  Hence the representation of parameter evaluation 

also involves the two sets of environments and program 

remainders; but this time the program remainder of S serves as 

the return address.  We will use the variable ρ to indicate the 

program remainder at the return point and φ, as usual, for the 

program remainder at the current point. 

We have so far represented, and will continue to 

represent, each program variable by a single indeterminate.  

The representation of an assignment statement may be 
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conceived as “binding” the indeterminate representing the 

variable appearing at the left-hand side to the representation 

of the right-hand expression.
1
  In general, the indeterminates 

representing program variables are “bound” at any time to the 

current values of the corresponding program variables.  With 

each called-by-value formal parameter we similarly need to 

associate a single indeterminate, bound to the current “value” 

of the parameter at any time.  However, we need to carry more 

information with a called-by-name formal parameter; depending 

on the type and use of a parameter we shall associate a number 

of indeterminates with it.  For each called-by-name formal 

parameter of type integer, we require three indeterminates best 

thought of as being bound, respectively, to the “value” 

associated with it and to the “parameter procedures” for 

evaluating it and making assignments to it.  If  p  is an 

integer parameter, then these three indeterminates will be 

usually denoted by p, pε , and pα.  (The parameter of type 

label will be discussed later.)  The environment of a statement 

in a procedure body will contain the variables corresponding to 

all of the above-mentioned indeterminates; specifically, it 

will consist of the following in the given order: 

 

 
 
1 The present descriptive use of “binding” and “bound” has 

no connection with the terms defined at the beginning of  
  Section 2.3. 
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(a) variables local to the procedure, 
 

(b) ρ, the “return” variable, 
 

(c) variables representing the formal parameters, 
 

(d) variables global to the procedure. 
 

Next, let us turn to the procedure call.  Associated with 

each called-by-name actual parameter p of type integer, and 

individual to each procedure call, is an ob that represents the 

“parameter procedure” for its evaluation.  In case p is a 

program variable (rather than an expression), there is also 

another ob which represents the “parameter procedure” to effect 

the assignments to p called for in the procedure.  These obs, 

referred to as “actual evaluation” and “actual assignment” 

operators, are denoted  ε
  

! 

p

a
  and  α

  

! 

p

a

 , respectively, with 

further distinguishing marks added when more than one procedure 

call is involved. 

Last, let us consider the procedure declaration.  

Associated with each called-by-name formal parameter of type 

integer, and unique to each environment within the procedure 

body, are two obs which represent the calls on the “actual 

evaluation” and “actual assignment” parameter procedures 

mentioned above.  For convenience, these obs are referred to as 

“formal evaluation” and “formal assignment” operators, and are 

usually denoted ε
  

! 

p

f
  and  α

  

! 

p

f

 , where p is the formal parameter, 

with further distinguishing marks added if more than one 

environment is involved.  If, in a statement in a procedure 
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body, a formal parameter appears as an operand of an 

expression, the statement will be represented as if preceded by 

a formal evaluation; likewise, if a formal parameter occurs at 

the left-hand side of an assignment statement, that statement 

will be represented as if immediately followed by a formal 

assignment. 

The above ideas will now be illustrated by means of a 

very simple example in which the declaration and the call of a 

procedure have the same environment. 

begin integer y; 
 
procedure P(x); integer x; x := x+2; 

 
y := 1; 

 
P(y) 

end 

The body of the above procedure consists of a single 

statement, and that statement needs to be both preceded by a 

formal evaluation and followed by a formal assignment.  Thus, 

it is represented by the compound  
 

Aφ: ε
  

! 

x

f

 (a(α
  

! 

x

f

φ)) ≡ b , 

say, where a is the representation of x := x+2 as an ordinary 

assignment statement.  Since there are no local variables in 

the procedure, the environment of this latter statement 

consists of the following: 

ρ     the “return” variable, 

xε    the “parameter evaluation” variable, 
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xα    the “parameter assignment” variable, 
 
x  the “parameter” variable, and 

 
y     the global variable   . 

Thus we can write  

a ≡ Aφρxεxαxy: φρxεxα(+x2)y .  

Now, as the variable  xε is bound to the actual evaluation 

operator, and the formal evaluation consists of just an 

application of this ob, we define  ε
  

! 

x

f

 to be 
 

 Aφρxεxαxy: xερφxεxαxy  , 

or more simply,  

                 Aφρxεxαx: xερφxεxαx  . 

Note the interchange of φ and ρ above; this signifies that the 

program remainder at the return point of procedure call becomes 

the current program remainder during parameter evaluation, and 

vice versa.  In a similar manner, we define 

               α
  

! 

x

f

 ≡ Aφρxεxαx: xαρφxεxαx  . 

(In general, the global variables of the procedure need not 

appear in the formal evaluation and assignment operators.) 
 
The whole procedure may be represented by 

 

                   P ≡ b(Aρxεxαx:ρ) 

which displays the effect that once the procedure execution is 

over, (after the application of b), only the return variable is 

retained, and the other variables, namely, the ones connected 

with parameters, are deleted from the environment. 

Next, let us look at the procedure call.  There is only 
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one call-by-name actual parameter of type integer in this 

statement.  So we need to define two obs ε
a
x  and  α

a
x , the 

actual evaluation and assignment operators.  These serve 

essentially as the fictitious assignment statements x:=y and 

y:=x (in the environment of the procedure call), respectively, 

and thus can be defined by  
 

                ε
  

! 

x

a
 ≡ Aφρxεxαxy: ρφxεxαyy  , 

 

                α
  

! 

x

a
 ≡ Aφρxεxαxy: ρφxεxαxx  .   

Again the interchange of φ and ρ is needed to represent the 

fact that after evaluating the actual parameter in the 

environment of the procedure calling statement, the control 

passes back to the procedure body.
2
 

The purpose of the procedure calling statement itself is 

three-fold: 

(a) to extend the environment from (y) to (xε,xα,x,y) 

(b) to initialize the added variables; that is, 

substitute  ε
  

! 

x

a
 for xε, α  

! 

x

a
 for xα, and, by convention, 

Ω for x. 

 

 
2 It should not be difficult to see that coroutines can be 

represented by using the same idea, as follows: the  
 “remainder” of each coroutine may be represented by a 

different variable.  The coroutine calls are then represent- 
able by the obs which simply permute these variables to 
bring the remainder of the called coroutine in front.  We 
will soon see how we can also account for the private 
variables of a coroutine by “covering” them when the control 
passes out of it and “uncovering” them on return. 
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(c) to apply P before the rest of the program; that is, 

substitute Pφ for φ. 

Consequently, the statement P(y) above may be represented by 

the ob  

(Axεxαx: (Aφy: Pφxεxαxy))ε   

! 

x

a
α
  

! 

x

a
Ω  , 

 

or, more simply, by         

                     Aφy: P φ ε
  

! 

x

a

 α  

! 

x

a

 Ω y  . 

Putting together the representations obtained piecemeal 

above, and adding the ones for the assignment and the block, we 

can now complete the representation of the program: 

Example. 

begin integer y; 

   procedure P(x); integer x; 

  ε
  

! 

x

f

  ≡ Aφρxεxαx: xερφxεxαx 

  α
  

! 

x

f

  ≡ Aφρxεxαx: xαρφxεxαx 

      x := x+2;                a   ≡ Aφρxεxαxy: φρxεxα(+x2)y 
  

                    b   ≡ Aφ: ε
  

! 

x

f

 (a(α
  

! 

x

f

φ)) 

                               P   ≡ b(Aρxεxαx:ρ) 

   y := 1;                     c   ≡ Aφy: φl 

   P(y)                        d   ≡ Aφy: Pφε
  

! 

x

a
α
  

! 

x

a
Ωy 

                               ε
  

! 

x

a
  ≡ Aφρxεxαxy: ρφxεxαyy 

                               α
  

! 

x

a
  ≡ Aφρxεxαxy: ρφxεxαxx 

 end                           e   ≡ Aφ:c(d(Ay:φ))Ω 

                               {prog }   ≡ eII 
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Next, let us consider the SK representation of type 

procedures in which a value is associated with the procedure 

identifier.  In this case we will use an additional variable π 

to denote the procedure value in representing the statements of 

the procedure body.  The representations are otherwise similar 

to those for the untyped procedures discussed above.  A 

statement in which the function designator of a procedure is 

used as an operand of an expression will be represented as if 

it were compounded of two statements -- the first a procedure 

call to obtain the value of the procedure, and the second using 

that value in the expression. 

The representation of a type procedure is shown in the 

following example, which also illustrates the treatment of 

call-by-value in our present scheme of procedure 

representation.  (Some explanation follows the program.) 

Example. 
 
begin integer u,v; 
 

integer procedure P(x,y); integer x,y; value y; 

                 ε
  

! 

x

f

 ≡ Aφρπxεxαxy:xερφπxεxαxy 

                 α
  

! 

x

f

 ≡ Aφρπxεxαx:xαρφπxεxαxy 

     begin 

 P := x-y;           a   ≡ Aφρπxεxαxyuv:φρ(-xy)xεxαxyuv 

                     b   ≡ Aφ:ε
  

! 

x

f

(aφ) 

 x := y              c   ≡ Aφρπxεxαxyuv:φρπxεxαyyuv 

                        d   ≡ Aφ:c(α
  

! 

x

f

φ) 
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 end compound    e   ≡ Aφ:b(dφ) 

 end P;              P   ≡ e(Aρπxεxαxy:ρπ) 

 u:=v:=3;              f   ≡ Aφuv:φ3 3 

 u:=P(v,u+1) + u;         g   ≡ Aφuv:PφΩε
  

! 

x

a
α
  

! 

x

a
Ω(+ul)uv 

               ε
  

! 

x

a
  ≡ Aφρπxεxαxyuv:ρφπxεxαvyuv 

               α
  

! 

x

a
  ≡ Aφρπxεxαxyuv:ρφπxεxαxyux 

               h   ≡ Aφπuv:φ(+πu)v 

            k   ≡ Aφ:g(hφ) 

end                     m   ≡ Aφ:f(k(Auv:φ))ΩΩ 
                        {prog } ≡ mII 
 

The environment of the statements in the procedure above 

consists of eight variables: the return variable ρ, the 

procedure value variable π, the three variables xε, xα, and x 

for the called-by-name parameter x, the single called-by-value 

parameter variable y, and finally the two global variables u 

and v.  Of these, the four parameter variables are effectively 

discarded at the end of the procedure body execution by the 

component (Aρπxεxαxy:ρπ) of P above.  The procedure call is 

represented as the compound of two statements f and g: f 

computes π, the procedure value, and g makes use of this in the 

assignment statement. 

In both previous examples, the environment of the 

procedure declaration and the procedure call are the same.  In 

the general case, these environments may be different; this is 

so, for example, when a procedure call takes place in a block 

enclosed by the block that declares the procedure.  When this 
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happens, there arises the problem of “covering” the local 

variables of the calling point whose scopes do not include the 

procedure declaration.  Of course, the covering must be such 

that the variables may be “uncovered” on return to the calling 

point.  Notice the contrast with jumps in which the variables 

that do not have valid declarations at the jump label are 

simply discarded permanently.  Covering is also needed in 

specifying the formal evaluation and assignment operators for 

use with statements inside a block in a procedure body, since 

in this case, again, the variables local to the procedure body 

are invisible at the calling point. 

 

The following example shows a way of covering the 

nonoverlapping parts of the environment, in order to overcome 

the environment conflict problem.  (See explanations below.) 

 

Example. 
 
begin integer x; 

   procedure P(y);integer y; 
       
      begin integer z; 

                            ε
  

! 

y

f
 ≡ Aφzρyεyαy:ρyε(Aψ:ψφz)yεyαy 

                    α
  

! 

y

f
 ≡ Aφzρyεyαy:ρyα(Aψ:ψφz)yεyαy 

 z := y+3; a ≡ Aφzρyεyαyx:φ(+y3)ρyεyαyx   

                            b ≡ Aφ:ε
  

! 

y

f
(aφ) 

     
  end block c ≡ Aφ:b(Az:φ)Ω 
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   end P; P ≡ c(Aρyεyαy:ρI) 

  

begin integer u; 

 P(u+x);               d ≡ Aφux:P(Aψ:ψφz)ε
  

! 

y

a
ΩΩx 

 ...               ε
  

! 

y

a
 ≡ Aφuρyεyαy:ρI(Aψ:ψφz)yεyα(+ux)x 

end 

 

end 
 

In representing the procedure call in the above example, 

(Aψ:ψφz) is passed as the return point argument instead of φ, 

thus covering u.  The application of (Aψ:ψφz) to any ob has the 

effect of uncovering u and restoring the environment; e.g., in 

ε
  

! 

y

f
 the application is made to yε, and in P, to I.  Note that in 

the representation of the procedure call, namely, d, we have 

used Ω for what would otherwise have been α
  

! 

y

a
; this is so, 

because no assignment can be made to the particular actual 

parameter in this case. 

 

The evaluation and assignment operators, both formal and 

actual, have been defined above slightly differently than in 

the two previous examples in which covering was not required.  

These two examples are worked out once again so as to make the 

treatment uniform, whether or not covering is needed in a 

particular case. 
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Example. 
 

begin integer y; 

   procedure P(x); integer x; 

  ε
  

! 

x

f

 ≡ Aφρxεxαx:ρxε(Aψ:ψφ)xεxαx 

  α
  

! 

x

f

 ≡ Aφρxεxαx:ρxα(Aψ:ψφ)xεxαx 

      x := x+2;                a  ≡ Aφρxεxαxy:φρxεxα(+x2)y 
  

                 b  ≡ Aφ:ε
  

! 

x

f

(a(α
  

! 

x

f

φ)) 

                               P  ≡ b(Aρxεxαx:ρI) 

   y := 1;                     c  ≡ Aφy:φl 

   P(y)                        d  ≡ Aφy:P(Aψ:ψφ)ε
  

! 

x

a
α
  

! 

x

a
Ωy 

                               ε
  

! 

x

a
 ≡ Aφρxεxαxy:ρI(Aψ:ψφ)xεxαyy 

                               α
  

! 

x

a
 ≡ Aφρxεxαxy:ρI(Aψ:ψφ)xεxαxx 

 end                           e  ≡ Aφ:c(d(Ay:φ))Ω 

                         {prog }  ≡ eII 

                                       
 
Example. 
 
begin integer u,v; 
 

integer procedure P(x,y); integer x,y; value y; 

                      ε
  

! 

x

f

 ≡ Aφρπxεxαxy:ρxε(Aψ:ψφ)πxεxαxy 

                      α
  

! 

x

f

 ≡ Aφρπxεxαx:ρxα(Aψ:ψφ)πxεxαxy 

     begin 

 P := x-y;           a  ≡ Aφρπxεxαxyuv:φρ(-xy)xεxαxyuv 

                       b ≡ Aφ:ε
  

! 

x

f

(aφ) 

 x := y                c ≡ Aφρπxεxαxyuv:φρπxεxαyyuv 

                          d ≡ Aφ:c(α
  

! 

x

f

φ) 
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 end compound      e ≡ Aφ:b(dφ) 

 end P;                P ≡ e(Aρπxεxαxy:ρIπ) 

 u := v := 3;                f ≡ Aφuv:φ3 3 

 u := P(v,u+1)+u;           g ≡ Aφuv:P(Aψ:ψφ)Ωε
  

! 

x

a
α
  

! 

x

a
Ω(+ul)uv 

             ε
  

! 

x

a
 ≡ Aφρπxεxαxyuv:ρI(Aψ:ψφ)πxεxαvyuv 

             α
  

! 

x

a
 ≡ Aφρπxεxαxyuv:ρI(Aψ:ψφ)πxεxαxyux 

                 h ≡ Aφπuv:φ(+πu)v 

              k ≡ Aφ:g(hφ) 

end                       l ≡ Aφ:f(k(Auv:φ))ΩΩ 
 {prog } ≡ lII 
 
 

For subscripted variables occurring as actual parameters, 

the actual evaluation and assignment operators are again chosen 

so as to represent the fictitious assignments between the 

formal and actual parameter variables.  But now this involves 

the obs elem and replace introduced in the discussion of arrays 

(Section 3.11).  We will simply illustrate the representation 

by means of an example.  (The statements denoted by ellipses 

are assumed not to contain any declarations.) 
 
 
 
Example. 
 
begin integer n; 
 
   ... 
 

begin integer array x [l:n]; 
 

procedure P(u,v); integer u,v; 
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begin 
 

... 
 

end P; 
 

begin integer y; 
 

... 
 

P(y,x [y]) 
 

end 

   end 
 
end 
 

For the above program, the representation of the procedure 

calling statement P(y,x [y]) is the ob 
 

 Aφyxn:P(Aψ:ψφy)ε 
  

! 

u

a
α
  

! 

u

a
Ωε

  

! 

v

a
α
  

! 

v

a
Ωxn, 

where 

ε
  

! 

u

a
 ≡ Aφyρuεuαuvεvαvxn:ρI(Aψ:ψφy)uεuαyvεvαvxn,  

α
  

! 

u

a
 ≡ Aφyρuεuαuvεvαvxn:ρI(Aψ:ψφu)uεuαuvεvαvxn, 

ε
  

! 

v

a
 ≡ Aφyρuεuαuvεvαvxn:ρI(Aψ:ψφy)uεuαuvεvα(x(elem yn)xn,  

α
  

! 

v

a
 ≡ Aφyρuεuαuvεvαvxn:ρI(Aψ:ψφy)uεuαuvεvαv(x(replace ynv)n.  

 

A procedure body may contain a procedure call, possibly a 

recursive one, in which the formal parameters are used in 

actual parameter expressions.  And the parameters of the nested 

call may themselves be called by name.  The representation in 

such a case requires the covering of all the variables 

associated with the procedure body, including the local 

variables, the return variable, and the parameter variables. 
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This is illustrated below. 

Example. 

begin integer x; 

procedure P(y,n); integer y,n; value n;  

   begin 

              ... 
            
            end P; 

procedure Q(z); integer z; 
 
begin integer w; 

 
               P(z,x); 
 
                 ... 
 
            end Q; 
 
         ... 

 end 

     If the representation of the body of the procedure P is a, 

then the representation of P itself is 
 

P ≡ a(Aρyεyαyn:ρI) . 

The representation of the statement P(z,x) is  
 

Aφ:ε
  

! 

z

f

(bφ) , 
 

where ε
  

! 

z

f

 is the formal evaluation operator for z in Q, and b 

represents the call on P, as follows: 

b ≡ Aφwρzεzαz x: P(Aψ:ψφwρzεzαz)ε   

! 

y

a
α
  

! 

y

a
Ωx x , 

ε
  

! 

y

a
 ≡ Aφwρzεzαz ρ1yεyαy x: ρ1I(Aψ:ψφwρzεzαz)yεyαz x , 

α
  

! 

y

a
 ≡ Aφwρzεzαz ρ1yεyαy x: ρ1I(Aψ:ψφwρzεzαz)yεyαy x . 
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The next example illustrates the representation of a 

procedure calling statement in which an actual parameter itself 

consists of a call on a procedure. 

Example. 

begin integer x; 

procedure P(r,s); integer r,s; begin ... end P;  

procedure Q(t); integer t; begin ... end Q;  

begin integer y; 

       ... 
 
P(x,Q(y)); 

end 

end 

     Because the second actual parameter, Q(y), in the above 

procedure calling statement P(x,Q(y)) does not require an 

assignment operator,
3 the latter statement is represented by 

the ob  

Aφyx:P(Aψ:ψφy)ε 
  

! 

r

a
α
  

! 

r

a
Ωε

  

! 

s

a
ΩΩx . 

The first actual parameter, x, poses no problem other than the 

covering of the variable y not visible to the procedure 

declaration of P; hence, we define 

ε
  

! 

r

a
 ≡ Aφyρrεrαrsεsαsx:ρI(Aψ:ψφy)rεrαxsεsαsx ,    

α
  

! 

r

a
 ≡ Aφyρrεrαrsεsαsx:ρI(Aψ:ψφy)rεrαrsεsαsr .   

 
3  As explained earlier, an assignment operator is required for 

those actual parameters which consist of a single program 
variable. 
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For the second actual parameter, Q(y), things are 

slightly more complex.  (Note, however, that only an evaluation 

operator is needed in this case; the assignment operator is 

undefined.) First, we have to provide for a call on Q -- which 

requires covering all the variables associated with the call on 

P -- with the following actual evaluation and assignment 

operators: 

   ε
  

! 

t

a
 ≡ Aφyρ rεrαr sεsαs ρ1πtεtαtx:ρ1I(Aψ:ψφyρrεrαrsεsαs)πtεtαyx 

   α
  

! 

t

a
 ≡ Aφyρ rεrαr sεsαs ρ1πtεtαtx:ρ1I(Aψ:ψφtρrεrαrsεsαs)πtεtαtx 

Now, ε
  

! 

s

a
 is defined in terms of a call on Q, followed by an 

assignment of the resulting value to s, as follows: 

   a ≡ Aφyρ rεrαr sεsαs x:Q(Aψ:ψφyρrεrαrsεsαs)Ωε   

! 

t

a
α
  

! 

t

a
Ωx , 

   b ≡ Aφyρ rεrαr sεsαs πx:ρI(Aψ:ψφy)rεrαrsεsαπx , 

   ε
  

! 

s

a
 ≡ Aφ:a(bφ) . 

 



145 

   

5.4 Label parameters 
 

The representation of label parameters is actually much 

simpler than of the integer variety.  The reason is that two 

different operations, evaluation and assignment, are possible 

with the latter type; in addition, the value of the parameter 

at any time has to be carried also along within the 

representation.  In the case of a label parameter, the only 

possible actual operation is a jump to it.  Thus, with each 

formal label parameter, p, we need to associate only one 

variable, denoted by pγ, which is to be bound to the operator 

for effecting the actual goto operation.  (The variable pγ is, 

of course, an element of the environment of the procedure 

body.) Next, associated with each actual label parameter, and 

individual to each procedure call, is an ob that represents the 

parameter procedure to effect the jump to the actual label.  

For a parameter p, this “actual goto” operator is denoted by 

γ
  

! 

p

a
, with further distinguishing marks added when more than one 

procedure call is involved.  Last, associated with each formal 

label parameter, and unique to each environment within the 

procedure body, is an ob, the “formal goto” operator, that 

represents a call on the actual parameter procedure, that is, 

an application of the actual goto operator; the formal goto 

operator for the parameter p is denoted γ
  

! 

p

f
 , again with further 

distinguishing marks added if more than one environment is 

involved. 

    For anyone who has followed the previous treatment of jumps 
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(Section 4.3) and procedures with integer parameters (Section 

5.3), the example below should suffice to explain how 

to represent label parameters.  

Example 

 begin integer q; 
 
procedure R(v); label v; 

  

        goto v; a ≡ γ
  

! 

v

f

 ≡ Aφρvγ: ρvγ(Aψ:ψφ)vγ 

R ≡ a(Aρvγ:ρI) 
 
     begin integer r; 
 

procedure P(x,z); integer x; label z; 

        ε
  

! 

x

f

 ≡ Aφρxεxαxzγ:ρxε(Aψ:ψφ)xεxαxzγ 

        α
  

! 

x

f

 ≡ Aφρxεxαxzγ:ρxα(Aψ:ψφ)xεxαxzγ 

              γ
  

! 

z

f

 ≡ Aφρxεxαxzγ:ρzγ(Aψ:ψφ)xεxαxzγ 

R(z);     b ≡ Aφρxεxαxzγrq:R(Aψ:ψφρxεxαxzγr)γ  

! 

v

a
q 

          γ
  

! 

v

a
 ≡ Aφρxεxαxzγrρ1vγq:γ  

! 

z

f

φρxεxαxzγrq 
 
begin integer s,t; 

 

P(t,L)    c ≡ Aφstrq:P(Aψ:ψφρst)ε 
  

! 

x

a
α
  

! 

x

a
Ωγ
  

! 

z

a
rq 

 

ε
  

! 

x

a
 ≡ Aφstρxεxαxzγrq: 

        ρI(Aψ:ψφst)xεxαtzγrq 

α
  

! 

x

a
 ≡ Aφstρxεxαxzγrq:ρI(Aψ:ψφsx)xεxαxzγrq 

γ
  

! 

z

a
 ≡ Aφstρxεxαxzγrq: L r q 

end; 
 

L: ... 
 

end 
 
end 
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CONCLUSION 

 

In this dissertation, we have presented a combinatory 

logic (or, equivalently, lambda-calculus) model of programming 

languages.  Since a number of programming language models based 

on the same calculi have already appeared in the literature 

[5,11,16,17,18,28,31,36], a comparison of our model with others 

is in order. 

1.  Our model does not introduce any imperative or 

otherwise foreign notions to the lambda-calculus.  This is in 

contrast to Landin [17], in which the imperative features of 

programming languages are accounted for by ad hoc extensions of 

the lambda-calculus.  We find that the calculus, in its purity, 

suffices as a natural model of programming languages.  By not 

making any additions to the calculus, we have the guarantee 

that all its properties, in particular, the consistency and the 

Church-Rosser property, are valid in our model, For example, 

even when a program requires a fixed order of execution, the 

normal form obtained by evaluating the program representation 

in any order, whatsoever, represents the program result 

correctly. 

2. In our model, programs are translated into lambda-

expressions, not interpreted by a lambda-calculus interpreter 

(Reynolds [31]).  Thus, programming semantics is completely 

reduced to the lambda-calculus semantics, but without 
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commitment to any particular view of the latter.  Also, all 

lambda-expression transformations are applicable to program 

representations. 

3. We model assignments by the substitution operation 

of the lambda-calculus.  Consequently, the notions of memory, 

address, and fetch and store operations do not enter our 

model in any explicit manner (Stratchey [36], Reynolds [31]). 

4. We represent high-level programming language 

constructs directly, not in terms of the representations of 

the machine level operations (Orgass-Fitch [28]) of the 

compiled code. 

5. Our model potentially spans the full ALGOL 60 

language.  It is also applicable to a number of other 

advanced programming features, such as collateral statements, 

the use of labels and procedures as assignable values, 

coroutines, etc. 

6. As a matter of opinion, it seems that our 

representations are much simpler and clearer than the ones 

given in other models. 

We have described the model informally, and only for a 

representative set of programming language constructs.  But 

we have provided enough motivating details and illustrations 

to, hopefully, convey the method and suggest its extension to 

other programming features.  Our explanations, we believe, 

are quite adequate for the detailed construction of an 

effective procedure, say, in the form of a compiler, to 
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translate ALGOL 60 programs into lambda-expressions. 

An immediate application of our model is in a functional 

(as opposed to computational) semantic definition of high-level 

programming languages, as the combinatory interpretations of 

the individual programming constructs can themselves be taken 

as the semantic specification of the constructs.  Of more 

interest, however, is the potential of the present model in 

studying the properties of programs -- such as, convergence, 

correctness, and equivalence -- and in performing useful 

program transformations -- such as program simplification 

(source code level) and optimization (compiled code level).  

Since we describe a program as a lambda-expression or a 

combinatory object, the above-described applications 

essentially reduce to transformations within the respective 

calculi.  The possibilities of some of these applications have 

been indicated by examples.  In the case of loop-free programs, 

these applications most often involve straightforward lambda-

calculus reduction.  For the programs containing loops, our 

proofs of correctness and equivalence are rather ad hoc; the 

development of systematic methods to deal with these 

applications warrants further research. 
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